学年

教科

質問の種類

数学 中学生

あってますか?間違えてるところあったら教えてください‼️

7 5章 三角形と四角形 三角形と四角形の活用 平行線と面積 >>> 右の図で, l/lmのとき, AABC=ADBC が成り立つ。 この式は △ABCと△DBCの m B 面積が等しいことを表しているよ。 教科書 P.170~173 平行な2直線間の距離 は1年で学習したね。 POINT 平行な直線間の距離 ℓ/mのとき, l上の どこに点をとっても, その点と直線との 距離は一定である。 A問題 等積変形 知技 P.171 学習日 月 日 2 平行線と面積 1 知技 教 P.170 下の図で, l/lmのとき, あとの問い に答えなさい。 下の図に, 辺BCを延長した半直線上 に点Eをとり, 四角形ABCD と面積が 等しい ABE をかく。 m B (1) △ABCと面積が等しい三角形を答えな さい。 A PBC (2)△ABDと面積が等しい三角形を答えな さい。 B (1) △ABE のかき方を次のように説明した。 □をうめて, 説明を完成させなさい。 点Dを通りACに平行な直線と, 辺 BC を延長した直線との交点を Eとすればよい。 なぜなら、このとき, ADAC ACE だから、 四角形ABCD=△ABC+ ADAC =△ABC+△ ACE A ACD (3) 図の中には,(1),(2), 面積が等し い三角形の組がもう1組ある。 その1組を, 記号 = を使って表しなさい。 (2) 上の図に△ABE をかきなさい。 =AABE AABE ADCE 2 Y

未解決 回答数: 1
数学 中学生

この問題私立の過去問の大問2️⃣の(5)です。 こういう問題は捨てていいと思いますか? 似たような問題やっても全然できませんでした。

ってきたんだか あとか (5)下の図のように、黒い正三角形を積み上げていく。 次の会話を読んで ア イにあてはまる式の組み合わせとして正しいものを選びな さい。 1番目 2番目 3番目 1-2421- 628200 Aさん:黒い正三角形を、1番目の図形は1個, 2番目の図形は3個、3番目の図形は6個使って いるね。 Bさん 2番目の図形の黒い正三角形の個数は, 1+23 (個) 3 図のように、箱には,1,2,3,4,5の数字が1つずつ書か 910の数字が1つずつ書かれた玉が5個入っている。 箱 A. Bから1個ずつ ら取り出した玉に書かれた数を4. 箱Bから取り出した玉に書かれた数をb 箱A 問いのアークにあてはまる数字をマークしなさい。 箱B 2 3番目の図形の黒い正三角形の個数は, 1+2+3=6 (個) だね。 Aさん ということは,n番目の図形の黒い正三角形の個数は、1からnまでの整数の和になるね。 at O Bさん 1+2+3+…+n (個) になるけどもっと簡単に表せないかな? (1) a+b=10 になる確率は, ア イウ である。 & Aさん:次のように、1からnまでの整数の和を2つたし合わせると, 001 0 (2) √ab が整数となる確率は, エ オカ である。 イ 個と表せるね。 1 + 2 + 3 + … + (n-1) + n 土) n +(n-1)+(n-2 +... + 2 + 1 Hom になって, (n+1) が ア 個現れるよ。 (n+1) + (n+1)+(n+1) +... +(n+1) +(n+1) Bさん これを利用すると, n番目の図形の黒い正三角形の個数は, (2) ア:n+1 イ: (n+1)2 11 ①アin イ: n(n+1) ③7:n イ: n(n+1) 2 (5) 7:n イ: n(n+1)2 2 ④:n+1 (n+1)2 イ: (3)座標平面上において,y=ax+b と y=bx の交点のx座標- 10

回答募集中 回答数: 0