学年

教科

質問の種類

数学 中学生

画像の赤丸がついている問題 の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

画像の3、4、5、6の求め方を教えていただきたいです🙇🏻‍♀️

考えるとその速さは約何km/h か。 もりおか 2 右は、新幹線「はやぶさ」のある便が東京駅を出発して 3000 盛岡駅に到着するまでの各駅の発着時刻をまとめたもので ある。 以下の問いに答えなさい。 駅名距離(km) 時刻 8km 15 東京 0 12:20発 ↓600 300 141 0.8 うえの 5 x (1) 東京一盛岡間のおよそ500kmを2時間で走ったと 上野 おおみや 12:25 着 271 4 12:26発 1.5 18 大宮 12:44着 294 31 250 4.4 12:45 発 66 1500 い 仙台 13:51 着 4.3 325 1926 13:52発 4030. 盛岡 497 14:32着 447 00 2 445 24 493. 48 2 ト 323 きょり (2)(1) のように、 物体がある距離を一定の速さで移動 したとみなしたときの速さを何の速さというか。 (3)(2)の速さが最も速いのはどの駅とどの駅の間か。294 261300 また、その速さは何km/min か、四捨五入して小数第1位まで求めなさい。 おそ B 31 172 (4) (3)の速さをキロメートル毎時で表すと何km/hか。 (5)平均の速さが最も遅いのはどの駅とどの駅の間か。また、その速さは何km/min か、 四捨五入して小数第1位まで求めなさい。 (6) (5) の速さをキロメートル毎時で表すと何km/hか。 194. (7) 新幹線「はやぶさ」は走行中に最高速度の320km/hに達することがある。 このような、 物体のその時々の速さを平均の速さに対して、 何の速さというか。 250km/h(2) 平均の速さ (1) (3) 大宮駅 仙台駅の間 速さ (5) 東京駅と 上野駅の間 速さ (7) 瞬間の薄さ 1330 25. 2500 14. S 1100 2150 160 2/32° 4017 325 $172. 1y5.11728 4.5kmywin (4) 270km/h 0.8km/min(0) 48mm/h

回答募集中 回答数: 0
数学 中学生

分かりやすい説明お願いします!

れ 均点は 甘いた式 (秋田) 地球儀上で,ブラジルは日本のおおよそ反対側にある。 現在の 直行便ができたらと仮定したときの, めいさんとパイロットである ところ、日本ブラジル間の飛行機の直行便はないが,下のは お父さんとの会話である。 きょり 動画が見られるよ。 めい もし、日本-ブラジル間の直行便ができたら, 飛行距離や飛行時間はどれくらいかな。 父 地面からの高さを高度というのだけど, 飛行機は高度約9~14km を飛ぶよ。 便によって, 高度は変わるんだけど,偏西風の影響を考えると,日本からブラジルに向かうときより, ブラジルから日本に向かうときのほうが低い高度を飛ぶことが多くなりそうだよ。 めい : 行きと帰りの飛行距離の差も求めてみようかな。 めいさんは,ブラジルは日本のちょうど反対側にあるものとし, 飛行距離は右の図のように半円の弧の長さで求められると考えた。 飛行機は一定の高度を保って飛び, 離着陸のことは考えないことに する。 地球の半径をkmとして,次の問いに答えなさい。 ① めいさんは、行き(日本からブラジルに向かうとき)は高度 akm,帰り (ブラジルから日本に向かうとき)は行きよりbkm 低い高度を飛ぶと考えた。 行きと帰りの飛行距離の差を求め なさい。 ただし, a>bとする。 1章 飛行距離 日本 ブラジル 行きは高度akm, 帰りは高度 (a-b)kmを飛ぶね。 式の計算 2匹 = ② ①の結果から, 行きと帰りの飛行距離の差についてわかることを次のア~エから選び, 記号 で答えなさい。 また、そのように考えた理由を説明しなさい。 ア 地球の半径の長さは関係するが, 行きの高度は関係しない。 イ 地球の半径の長さも、行きと帰りの高度の差も関係する。 ウ 地球の半径の長さは関係しないが, 行きの高度は関係する。 エ 地球の半径の長さは関係しないが, 行きと帰りの高度の差は関係する。 記号 ●説明 高度12km を飛び、地球の半径を6378km, 飛行機は時速900km で進み,円周率を3と すると,日本-ブラジル間の飛行時間は何時間か求めなさい。

回答募集中 回答数: 0
数学 中学生

学校の宿題で、調べた市の2月の最高気温をデータ化して自分の意見をまとめるという宿題が出たのですが、自分の意見に自信が無いです。写真の1枚目は私が書いたプリントで、2枚目は書き方のヒントです。 私が考えたのは ⑥12% 「0°以上12℃未満」に含まれる日数は100年前と比... 続きを読む

45 40 35 30 25 20 15 10 5 1学年 7章 まとめ 0 ① 階級の幅を3℃にして, 1920年~1924年と2020年~2024年の度数分布表をつくる。 度数(日) 階級 (℃) 階級値 (℃) 12 15 O ~3 3 ② 上の度数分布表をもとにして, それぞれのヒストグラムをかき度数折れ線をかく。 (日) 1920年~1924年 50 市の2月の最高気温について 0 6 ~9 18~21 21~24 24~27 計 3 ~15 ~18. 6 1年組番 名前 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 9 12 15 18 21 24 27 (°C) (日) 50 45 40 35 30 25 20 15 10 1920年~1924年 5 14 41 46 30 q 0 0 142 0 3 6 9 2020年~2024年 12 2020年~2024年 5 18 37 30 18 12 10 141 15 18 21 24 27 (°C) ③ 度数分布表をもとにして, 中央値をふくんでいる階級をそれぞれ求める。 1920年~1924年 9 °℃ 2020年~2024年 28 I 12℃以上 ④ 度数分布表をもとにして, それぞれの最頻値,平均値を求める。 ※小数第二位を四捨五入して、小数第一位で求める。 1920年~1924年 予想 2020年~2024年 1920年~1924年 12℃未満 未満 _% 15°C ⑤ 「0℃以上12℃未満」にふくまれる日数は, それぞれ全体の何%か? 最頻値 10.5°C 10.5°C 72% 42% ⑥ ①~⑤までで求めたことをもとにして, 2120年~2124年の5年間では「0℃以上12℃未満」に占める日数の割 合は全体の何%になると予想されるだろうか。 また、 なぜそう考えたのか ①~⑤の結果をもとに書いてみよう。 平均値 10.1°C 13.9°C 2020年~2024年 ⑥のようになっていくと考えた理由を、 現在の環境問題と照らし合わせて説明してみよう。

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0