学年

教科

質問の種類

数学 中学生

二次関数の最大値について 二次関数の最大値とは、私の中の認識ではyの値の最大値でしたが、添付画像の問題のような「x=○、y=△のとき最大値が□」というように答えのyの値と最大値が違うことがあるので混乱しています。 私の認識から間違っているかもしれません。詳しく解説お願い... 続きを読む

解説 追加費用 スマートフォンな の例題解説動画 入の方は追加費 ※解説動画は、書 の2次元コードか 青チャー 日常学習 ( 入試対策 選び抜かれ あり、効率よ 種々の解説 150 基本 例題 89 2変数関数の (1) 2x+y=3のとき,2x'+y2の最小値を求めよ。 (2)x0,y, 2x+y=8 のとき, xyの最大値と最小値を求めよ。 指針 (1)の2x+y=3, (2) の2x+y=8のような問題の前提となる式を条件式と 条件式がある問題では,文字を消去する方針で進めるとよい。 (1) 条件式2x+y=3から y=-2x+3 これを2x2+yに代入する 2x2+(-2x+3)"となり, yが消えて 1変数 xの2次式になる。 →基本形α(x-p)+αに直す方針で解決! (2)条件式からy=-2x+8として」を消去する。 ただし、次の点に要注意 消去する文字の条件 (y≧0) を,残る文字(x) の条件におき換え CHART 条件式 文字を減らす方針で (1) 2x+y=3から 解答 y=-2x+3 ...... ① 2x2+y2に代入して, y を消去すると 2x2+y2=2x2+(-2x+3)2 =6x2-12x+9 =6(x²-2x)+9 学の知識 ■考える力 例題ページ( 針をどのよ 問題の解き 法にたどり えることで, したがって (2) 2x+y=8から y≧0であるから =6(x²-2x+12)6・12+9 =6(x-1)'+3 よって, x=1で最小値3をとる。 このとき, ①から y=-2・1+3=1 x=1, y=1のとき最小値3 y=-2x+8 -2x+8≧0 ...... ① 変域に注意 Myを消去 として、を 分数が出てく 入後の計算 000+x 重要 (1)x, (2)x, t=6(x-1 は下に凸で 実数全体 解 (x,y)=(1 に表すことも ゆえに x≤4 .... ② なお, 指針 タブ どこでも ⑤ エスビューア 書をタブレット いつでも、ど デジタルなら x≧0との共通範囲は 0≤x≤4 また xy=x(-2x+8)=-2x+8x 銀三 =-2(x2-4x) =-2(x2-4x+22 +2・22 =-2(x-2)2+8 ② の範囲において, xyはx=2で最大値8をとり x = 0, 4で最小値0 をとる。 ①から x=2のとき y=4, x=0のとき y=8, x=4のとき y=0 ゆ よって (x,y)=(2,4)のとき最大値8 xy=t とおいた 0t=-2(x-2+ のグラフ ta 最大 148F 最小 01 (x,y)=(0,8), (40) のとき最小値 0 練習 (1) 3x-y=2のとき,2x2-y2の最大値を求めよ。 ③ 89 (2)x0,y≧0, x+2y=1のとき, x2+y2の最大値と最小値を

解決済み 回答数: 2
数学 中学生

例題85 (2)の解説について質問です。 なぜ場合分けの時に「0<a≦2」とおくのですか?問題文に「正の定数a」と書いてあるので0<になるのは分かりますが、なぜ≦2なのかが分かりません。

146 基本 例題 85 2次関数の係数決定 [最大値・最小値] (1) 00000 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 | (1) を定めよ。 また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 a の値を求めよ。 基本 80, 82 重要 86 指針 関数を基本形y=a(x-p)+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4 (2) (最小値)=11 とおいた方程式を解く。 (2)では, 軸x=α (a>0) が区間0≦x≦2の内か外かで場合分けして考える。 HART 2次関数の最大・最小 グラフの頂点と端をチェック 重要 例題 定義域を0≤ とき、定数 この間 指針 形が変 a=0 (最大 なお, いよ 解答 関数の (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 よって, 1≦x≦4においては, YA 最大 k+8 右の図から、x=2で最大値k+8 4 012 x 区間の中央の値は 1/2で あるから, 軸 x=2は区 間 1≦x≦4で中央より 左にある。 [1] a 解答 f(x) [2] a をとる。 y=f ゆえに k+8=4 線と 最小 最大値を4とおいて, よって k=-4 このとき, x=4で最小値-4 をとる。 (2) y=x2-2ax+α² -2aを変形すると y=(x-a)2-2a [1] 0<a≦2のとき, x=αで 最小値 -2αをとる。 kの方程式を解く。 は. をと [1] YA 軸 < 「αは正」に注意。 <0<a≦2のとき, 軸x=αは区間の内。 11 -2a=11 とすると α = a 2 0 2 x →頂点x=αで最小。 これは0 <a≦2を満たさない。 [2] 2<αのとき, x=2で の確認を忘れずに。 2a最小 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11 とすると a²-6a-7=0 [2] YA 2-6a+4 最小 a <(a+1)(a-7)=0 これを解くと a=-1,7 02 x 軸 2 <αを満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 2<αのとき, 軸x=αは区間の右外。 →区間の右端 x=2で最 小。 線と は をと これ これ 以上 注意 問題文 f(x)= 練習 (1) 2次関数y=x2-x+k+1の1≦x≦1における最大値が6であるとき、定数 ③ 85 kの値を求めよ。 EX61 (2) 関数 y=-x2+2ax-a-2a-1-1≦x≦0) の最大値が0になるような定数 α の値を求めよ。 練習 定義 ③ 86 と

未解決 回答数: 0