学年

教科

質問の種類

数学 中学生

(5)の(ア)と(イ)の解説お願いします!!

4 右の図のように, 東西にの 太郎さん 花子さん びるまっすぐな道路上に 地点Pと地点Qがある。 太郎さんは地点Qに向 かって,この道路の地点Pよ り西を秒速3mで走っていた。 西 -東 花子さんは地点Pに止まっていたが, 太郎さんが地点Pに到着する直前に,この道路を 地点Qに向かって自転車で出発した。 花子さんは地点Pを出発してから8秒間はしだいに 速さを増していき、 その後は一定の速さで走行し, 地点P を出発してから12秒後に地点Q に到着した。 花子さんが地点P を出発してからx秒間に進む距離をym とすると, xとyと の関係は下の表のようになり, 0≦x≦8の範囲ではxとy との関係は y=ax2 で表され るという。 x (F) 0 ア 8 10 *** 12 y (m) 0 4 16 24 イ 次の(1)~(5)の問いに答えなさい。 (1) a の値を求めなさい。 (2) 表中のア, イにあてはまる数を求めなさい。 (3) xの変域を 8 ≦x≦12 とするとき と との関係を式で表しなさい。 (4)xyとの関係を表すグラフをかきなさい (0≦x≦12) (5) 花子さんは地点P を出発してから2秒後に, 太郎さんに追いつかれた。 (ア) 花子さんが地点Pを出発したとき, 花子さんと太郎さんの距離は何m であったかを 求めなさい。 (イ) 花子さんは太郎さんに追いつかれ, 一度は追い越されたが,その後, 太郎さんに追い ついた。 花子さんが太郎さんに追いついたのは, 花子さんが地点Pを出発してから何 秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

出来たら全部解説お願いしますm(_ _)m

★ 1 y=-2x2 について, 次の問いに答えなさい。 (1)xの変域が-3≦x≦-1 のとき, yの変域を求めなさい。 (2)xの変域が −2≦x≦4 のとき,りの変域を求めなさい。 2 右の図のような長方形ABCDの頂点Aにある2 点P, Qが,点Aを同時に出発し, PはA→B→Cに 沿って1cm/秒, QはA→D→Cに沿って2cm/秒 の速さで頂点Cまで向かう。 A D Q 6cm B 8cm-----C (1) 0≦x≦4 のとき, x秒後の△PAQの面積を ycm2として,yをxで表しなさい。 ★ (2) 4≦x≦6 のとき, x秒後の△PAQの面積 ycm² をxで表しなさい。 3 右の図のように,放物線y=x2 ① と直線 y=x+2 ...... ② が2点A, Bで交わっている。 (1) 2点A,Bの座標を求めなさい。 じく (2)直線②とx軸の交点をCとするとき,比 CA: AB を求めなさい。 F010) (S) y=x2yy=x+2 A 2 3 -X ④ 右の図のように,関数y=-x^のグラフ上に, x座標がそれぞれ-4, 2となる2点A, B をとる。 (1) 直線 AB の式を求めなさい。 (2) y=1/2x2(-4<x<2) のグラフ上に点Pをと り,△OCP の面積が△OABの面積の1/3になる ようにしたい。 点Pの座標を求めなさい。 ヒント ---- A y B x 2 〔新潟一改〕 ② (1) AP=x, AQ=2x であることに注意する。 (2)底辺を AP=x とすれば, 高さは一定になる。 [3] (1) まず, 方程式 x2=x+2 を解く。 [4] (2)△OAB の面積を求めてもよいが, △OAB=△OCB×3となることを用

回答募集中 回答数: 0