学年

教科

質問の種類

数学 中学生

二次関数の変域の問題です。1.2.3について詳しく解説してくれると嬉しいです。

の変域 の変域 ン。 (2) とき) なるこ つうち, 負から正に変わっているので、yの変域は0以上または0以下となる。 また by 18よりyの変域は0以上で,a>0 とわかる。よって,b=0 一方、xの変域の両端の値のうち、絶対値の大きなx=3がy=18と対応するので,y=arにそれ ぞれ代入し, a=2と求まる。 答 a=2,b=0 中3で習う分野 問題 (解 mnを整数とする。関数y=axについて,xの変域がm≦x≦nのとき,yの変 0≦y2である。 m, nの値の組は全部で何通りありますか。 y=1/2xにおいて,yの値が2となるときのxの値は,y=2 を代入して, 2=1/2x2 よって、x=±2 (都立新宿高) 一方,比例定数は正で,yの変域が0以上ということを考えると,mは0以下で絶対値が2以下の 整数,nは0以上で絶対値が2以下の整数,さらにm,nのどちらか一方の値は必ず絶対値が2と なることがわかる。 EE, (m, n)=(-2, 0), (-2, 1), (-2, 2), (-1, 2), (0, 2) 5通り m n 入試問題にチャレンジ! 解答は, 別冊 p.47 2乗に比例する関数 Q問題 1 n を2以下の整数とする。 関数 y=xのxの変域がn≦x<3のとき,yの変域が 0≦y<9 となるnの値をすべて求めなさい。 ( 都立日比谷高) 9=9 12=0 m=0 1 問題2 関数 y=-- xについて、xの変域がa≦x≦a+5であるとき、yの変域が -4≦y0 となるようなαの値をすべて求めなさい。 ( 青山学院高 ) かる。 問題 3 α bを定数とする。 ただし, αは負の数とする。 3 関数 y=ax と1次関数y=2x+b において,xの変域が-1≦x≦3のとき,2つの関数の yの変域が一致した。 a, b の値をそれぞれ求めなさい。 (都立国分寺高) 101

回答募集中 回答数: 0
数学 中学生

(4)の解き方がわかりません💦💦 ちなみに ア12 イ7 ウnの2乗 エnの2乗+2n オ2n+1 です‼︎

6 150枚のカードがある。 これらのカードは下の図のように、表には 1から10までの自然数 が1つずつ書いてあり、裏には、表の数の、正の平方根の整数部分が書いてある。 表 1 2 裏 1 1 3 4 5 150 150 の 2 2 整数部分 次の(1)~(4)の問いに答えなさい。 (1) 表の数が10であるカードの裏の数を求めなさい。 (2)次の文章は,裏の数が”であるカードの枚数について, 花子さんが考えたことをまとめた ものである。 アイには数を,ウ~オにはn を使った式を, それぞれ当てはまるように書きなさい。 表の数が150 であるカードの裏の数は ア であるので、裏の数 n は ア 以下の自然数になる。 (I) n ア のとき 裏の数が ア であるカードは,全部で イ 枚ある。 (II) nが ア 未満の自然数の 裏の数がnであるカードの表の数のうち, 最も小さい数は ウ であり, 最も大きい 数は エ である。 よって, 裏の数が”であるカードは,全部 で( オ 枚ある。 (II) nが ア 未満の自然数のとき 【裏の数がnであるカード】 表 ウ エ 裏 12 n 全部でオ 枚 (3)裏の数が9であるカードは全部で何枚あるかを求めなさい。 (4) 150枚のカードの裏の数を全てかけ合わせた数をPとする。 Pを3" で割った数が整数に なるとき, m に当てはまる自然数のうちで最も大きい数を求めなさい。

回答募集中 回答数: 0
数学 中学生

例121 幅を1/2で場合分けをするのはなぜですか。

121 ガウス記号を含む方程式 「次の方程式を解け。ただし、[x]はxを超えない最大の整数を表す。 (1)(2x13 (2) [3x-1] =2x Action ガウス記号は、nxn+1 のとき (3) 2x][x]=3 はガウス記号が1つのとき nxn+1 として外す (3)はガウス記号が見つ 場合に分ける [x] ごとに ☆☆☆☆ として外せ 例題120 にこの部分で考えてみる 特調 0 3 2 n X 11+ 12x1 3 ごとに値が変わる (ア)(イ) 13 J (1)(2)より, 3 2x < 4 であるから 3 2 (2) 13.x-11 2.x ① より 2x は整数である。 2.x 53x-1<2x+1 1≦x<2 ①より これを解くと であり, 2x は整数より 3 よって x=1, 2x=2,3 2 x<2 方程式の解は、不等式で 表される範囲になる。 3x-1] は整数である から 2xも整数になる。 2x3x-1 より x21 3x-1 <2x+1 より x<2 (3) [2x]-[x]=3 ・・・とする。 (n は整数)のとき 22x<2n+1 であるから また、x="であるから,②は [2x] = 2n 2n'n= よって n = 3 =3 7 ゆえに 3≦x< (イ)〃+. 2 xn+1 (n は整数)のとき 2月 +1≦2x<2n+2であるから [2x=2n+1 また,[x]=nであるから, ②は (2n+1)-n=3 よって n = 2 5 ゆえに ≤ x <3 5 より x 幅 1/12 場合分けす る。 2次関数と2次不等式 11/13≤ x < 1/10 1121 次の方程式を解け。ただし,[x]はxを超えない最大の整数を表す。 (1) [3xl=1 (2) 2x=[5] (3) [2x+1]=3x (4) [3x]-[x]=1 217 p.222 問題121

回答募集中 回答数: 0
数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0