学年

教科

質問の種類

数学 中学生

(a)の問題と(b)の問題が分かりません。 2つともかっこを使わないもっとも簡単な式で答えればいいです。 (a)の答えはy=90x-560です。 y=90xまでは分かるのですが、なんで-560になるか分かりません。 (b)の答えはy=-100x+3000です。 おねがい... 続きを読む

さんの家からBさんの家までの道のりは2500mで,その途中には公園があり,Aさんの の道のりは1600mである。 AさんはBさんの家へ行くために午前9時に家を出発し, 20分 春ち合わせ場所である公園に着いた。 BさんはAさんを迎えに行くために, 午前9時15分に家 出発して公園へ向かった。 Aさんは公園でBさんを数分間待ち, Bさんが着くとすぐに分速 90 で歩いて, 午前9時34分にBさんの家に着いた。 下の図は、Aさんが家を出発してからx分後のAさんの家からAさんがいる地点までの道のり ymとして,Aさんが家を出発してから公園に着くまでのxとyの関係をグラフに表したものであ このとき、下の会話文を読み, あとの(1)~(4)の問いに答えなさい。 会話文 (m) y 2600 2400 2200 2000 560 A 2,500円 1,600m x1 80m 1800 0 1600 1400 1200 1000 800 600 20分 9分 1600 400 09 200 80 X C 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 (分) 29 1600 160 生徒X: Aさんは家を出発して20分後に公園に着いているから, Aさんが公園まで歩いた速 さは分速はひです。 生徒Y:Bさんを待った後は, Bさんの家まで分速90mで歩いています。 このときのAさん です。 y=90x-560 のグラフの式は (a) 教師T:そうですね。 Aさんが公園でBさんを待っていたのは何分間でしょうか。 生徒X:2人で公園からBさんの家まで歩いたときにかかった時間を考えると、公園を出発 した時刻がわかります。 生徒Y:Aさんが公園でBさんを待っていたのはふ分間です。 教師T:そのとおりです。 では,Bさんが午前9時5分に家を出発して, 分速100mでAさん 1600m の家に迎えに行く場合の2人が出会う時刻を考えてみましょう。 生徒X:この場合,Bさんは午前9時20分より前に公園を通り過ぎています。 生徒Y:Aさんが公園に向かっているときに2人は出会いますね。 2500円 生徒X : Aさんが家を出発してからx分後のAさんの家からBさんがいる地点までの道のりを ym とすると,Bさんが午前9時5分に家を出発して, 分速100mでAさんを迎えに 行くときのグラフの式は(b) となります。 この式とAさんが家を出発して公園まで 歩くときのグラフの式を連立方程式として解けば、2人が出会う時刻が求められます。 教師T:そうですね。2人がそれぞれの家を出発してからのxとyの関係を表すグラフをかく と考えやすいですよ。

回答募集中 回答数: 0
数学 中学生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 特講 例題 121 ガウス記号を含む方程式 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [2x] = 3 (2) [3x-1] = 2x (3) [2x]-[x] = 3 ★★★☆ ReAction ガウス記号は,n≦x<n+1 のとき [x] = 〃 として外せ 例題120 (1), (2) はガウス記号が1つ[x]=nのときn≦x<n+1 として外す (3)はガウス記号が2つ 場合に分ける 42227=2 TT [x] 幅1ごとに値が変わる 一般にこの部分で考えてみる -1 0 3 1 x 2 n [2x] => n+12/2 n+1 3 幅ごとに値が変わる (ア)(イ) 0 2次関数と2次不等式 11 [2x] =3より, 3≦2x < 4 であるから 32 (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 ≦x<2 xであり、2xは整数より 2x=2,3 3 よって x=1, 2 (3) [2x]-[x]=3…② とする。 (ア)n≦x<nt 1/2(nは整数)のとき 方程式の解は,不等式で 表される範囲になる。 [3x-1] は整数である から, 2x も整数になる。 2x3x-1 より |3x-1<2x+1 より x < 2 x≧1 xを幅 1/2で場合分けす 2n≦2x<2n+1 であるから [2x] = 2n る。 また,[x] = nであるから,②は2 |2n-n=3 よって n=3 ゆえに 3≦x< 2 1 (イ) n+ ≦x<n+1(n は整数)のとき 2 2n+1≦2x2n+2 であるから [2x] =2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって ゆえに n = 2 52 (ア)(イ)より ≦x<3 5 2017/ 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [3x] =1 (2) 2x = [√5] (3) [2x+1]=3x (4) [3x]-[x]=1 220 217

回答募集中 回答数: 0
1/17