学年

教科

質問の種類

数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

二次関数の変域の問題です。1.2.3について詳しく解説してくれると嬉しいです。

の変域 の変域 ン。 (2) とき) なるこ つうち, 負から正に変わっているので、yの変域は0以上または0以下となる。 また by 18よりyの変域は0以上で,a>0 とわかる。よって,b=0 一方、xの変域の両端の値のうち、絶対値の大きなx=3がy=18と対応するので,y=arにそれ ぞれ代入し, a=2と求まる。 答 a=2,b=0 中3で習う分野 問題 (解 mnを整数とする。関数y=axについて,xの変域がm≦x≦nのとき,yの変 0≦y2である。 m, nの値の組は全部で何通りありますか。 y=1/2xにおいて,yの値が2となるときのxの値は,y=2 を代入して, 2=1/2x2 よって、x=±2 (都立新宿高) 一方,比例定数は正で,yの変域が0以上ということを考えると,mは0以下で絶対値が2以下の 整数,nは0以上で絶対値が2以下の整数,さらにm,nのどちらか一方の値は必ず絶対値が2と なることがわかる。 EE, (m, n)=(-2, 0), (-2, 1), (-2, 2), (-1, 2), (0, 2) 5通り m n 入試問題にチャレンジ! 解答は, 別冊 p.47 2乗に比例する関数 Q問題 1 n を2以下の整数とする。 関数 y=xのxの変域がn≦x<3のとき,yの変域が 0≦y<9 となるnの値をすべて求めなさい。 ( 都立日比谷高) 9=9 12=0 m=0 1 問題2 関数 y=-- xについて、xの変域がa≦x≦a+5であるとき、yの変域が -4≦y0 となるようなαの値をすべて求めなさい。 ( 青山学院高 ) かる。 問題 3 α bを定数とする。 ただし, αは負の数とする。 3 関数 y=ax と1次関数y=2x+b において,xの変域が-1≦x≦3のとき,2つの関数の yの変域が一致した。 a, b の値をそれぞれ求めなさい。 (都立国分寺高) 101

回答募集中 回答数: 0
数学 中学生

中3数学です。 203の(3)がわからないので教えて欲しいです! 回答も載せてるので誰か教えていただけると嬉しいです。

(1) 定義域が-4≦x≦-2, 値域が 3y12 □(3) 定義域が√2≦x≦√3値域が 0≦y≦6 202 次の問いに答えなさい。 □ 11 関数 y=-2x2 について, 定義域が −2≦x≦a のとき, 値域が - 18≦y≦b となる。 定数a, b の値を求めなさい。 □ (2) 関数 y=ax (a≠0) について, 定義域が -4≦x≦2 のとき, 値域が by≦8 となる。定数a, bの値を求めなさい。 203 次の問いに答えなさい。 ■(1) 定義域が −2≦x≦1 である2つの関数 y=-3z,y=ax+b (a>0) の値域が一致するような, 定数a, bの値を求めなさい。 □(2) 定義域が -1≦x≦2 である2つの関数 y=2x2, y=ax+b の値域が一致するような, 定数 α b の値を求めなさい。 ■(3) 定義域が -3≦x≦2 である2つの関数 y=ax2 (a≠0), y=3x+b の値域が一致するような,定 数α, bの値を求めなさい。 □4) 定義域が−2≦x≦4 である2つの関数y=ax2 (a≠0),y=bx+2(b>0)の値域が一致するよう な定数 α, bの値を求めなさい。 204 右の図の直角三角形ABC は, 2辺AB, BC の長さの比が 1:3 である。 辺 ABの長さをxcm, △ABCの面積をycm² とす あるとき、次の問いに答えなさい。 (1)yをェの式で表しなさい。 また、xの値の範囲も答えなさい。 ■(2)(1) で求めた式について,yはxの関数であると考える。 定義域を 1≦x≦2 とするとき, 値域を求めなさい。 A xcm ycm2 h B ■3) (1)で求めた式について,リはこの関数であると考える。値域が3≦y≦9 となるとき,定義域を求 めなさい。 54 第4章 関数y=ax2 第4章

回答募集中 回答数: 0
1/36