学年

教科

質問の種類

数学 中学生

中二、式の計算の問題です。学校に提出して点数を付けられるので、間違っていないかこれで正しいかしっかりと確認して欲しいです。間違ってたら教えてください。よろしくお願いします

数学レポート課題 ① (第一章 式の計算) 連続する3つの偶数の和は、6の倍数になることを、 整数 n を使って説明しなさい。 連続する30の偶数のうち真ん中の数をとする。 連続する3つの偶数は2n-2.2n.2n+2と表せる。 これらの和は(2n-2)+2n+(2n+2)=6n. ここでは整数だからonは6の倍数である。 ●よって連続する3つの偶数の和は6の倍数である。 各位の数字の和が3の倍数である3ケタの整数は、3の倍数であることを説明しなさい。 aを1~9の整数、l.Cを0~9の整数にすると 379の整数は1000+102+Cと表せる。 また各位の数の和が3の倍数なので、athtcは3の倍数である。 その和は1000+10h+C=13×33+170+13×3+1)h+c =3(33a+3h)+a+h+c 右の図のように、 カレンダーの 5つの数を囲むとき、 囲まれた5 つの数の和は真ん中の数の5倍に なることを説明しなさい。 ここで 33.0+3lは整数なので3(33a+3h)は3の倍数である。 またa+b+cも3の倍数なので、3(330+)+ath+Cは3の倍数で よって、各位の数字の和が3の倍数である3ケタの整数の和は3の倍数 ある。 日 月 火 水 木 金 土 である。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 連続する4つの奇数の和は8の倍数になることを、 整数 n を使って説明しなさい。 nを整数とすると連続する4つの奇数は、2n+1.2n+3.2n+5.2n+7 5つの数のうち真ん中をれとする。 と表せる。 その和は(2n+1)+(2n+3)+(2n+5)+(2n+7)=8n+16 =8(n+2) ここで+2は整数だから、8(n+2)は8の倍数である。 よって連続する4つの奇数の和は8の倍数である。 5つの数は n-7.n-1.nn+1.n+7で表せる。 その和は(n-1)+(n-1)+h+(n+1) +(n+7)=5n. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ここでは整数だから5には5の倍数である。 よって、5つの数の和は5の倍数である

未解決 回答数: 1
数学 中学生

入試レベルなんですが、ここの写真の解き方を教えてほしいです🙏2️⃣の(1)と(2)は大丈夫でくす!

(1-9) (201 ●ムズ ムズ ココに 数学 P.27 式の活用 3 右の図の台形ABCD 1 2つの自然数m, nがある。 mを7でわる と商がα, 余りが3で, nを7でわると商が6, 余りが5である。この2数の積mnを7でわ ったときの余りを求めなさい。 と面積が等しい正方形の た式で表しなさい。 1辺の長さをを使っ B (x+2) 積 「新聞 読ん cm 2 ある月のカレンダーにおいて, 図1のような形に並ぶ4つの数 を小さい順に a, b, c, d とし, この4つの数の間に成り立つ関 係について考える。 図2は α=5のときの例である。 群馬 (1)c=27 のとき, αの値を求め なさい。 (2) dをαの式で表しなさい。 P.27 式の活用 図1 a b cd 4 ②P.27 3と61215のように, 連続する 20 ほう 3の倍数において,大きい方の数の2乗 小さい方の数の2乗をひいた差は,もとの 一つの数の和の3倍に等しくなることの証明を a= 図2 56 完成させなさい。 |13 14 整数を用いると d=o (3) bc-ad の値はいつでも8であることを, 文 字を使って説明しなさい。 12 8 212 m (3-0) したがって、連続する2つの3の倍数において, きい方の数の2乗から小さい方の数の2乗をひい 差は、もとの2つの数の和の3倍に等しくなる。

未解決 回答数: 1
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
地理 中学生

わからないです教えてください泣

13 14y Oy+6 25x-13g 2y (3 176 4 14 x+ 125 a 1 らの相は 69 17. 5 3けたの正の整数で,百の位、十の位, 一の位の数の和が9でわり切れるとき,こ の3けたの整数が9でわり切れることを 文字式を使って説明しなさい。 20点(各5点 の 問題では3けたの場合を考えたけど, 何けたの数でも、 各位の数の和が 9でわり切れるとき,その整数は 9でわり切れることを説明できるよ。 問題文の9をすべて3にかえた 問題を解いてみよう。 右の説明と 同じようにすれば説明できるよ。 2n+(2n+2)+ (2n+4) =6n+6 =6(n+1) n+1は整数だから, 6(n+1)は6の倍数 である。 したがって, 連続する3つの偶数の和は, 6の倍数である。 5 p.1765 15点 百の位の数を a, 十の位の数をb, 一の位 の数をc とすると, 3けたの正の整数は, 100a +10b+c と表される。 また, a+b+cは9でわり切れるから, m を整数とすると, a+b+c=9mと表される。 このとき, 100a +10b+c =99a+9b+ (a+b+c) =99a+9b+9m =9(11a+b+m) 11a+b+m は整数だから, 9 (11a+b+m) は9の倍数である。 式の計算 したがって, 3けたの正の整数で,百の位, 十の位、一の位の数の和が9でわり切れる とき、この3けたの整数は9でわり切れる。 Sa²b³ 5 -b 6 Fy2 2xy 6 次の等式を、[ ]内の文字について解きなさい。 16 p.17 B6 15点(各5点)

未解決 回答数: 1