学年

教科

質問の種類

数学 中学生

全部教えてください! 書いてるところは合ってるかも知りたいです

5章 相似な図形 5章の確認 1 相似条件と相似比 右の図で、 ∠BAC = ∠BCD である。 次の問 いに答えよ。 □(1) 相似な三角形を記号を使って表せ。 また, そのときに使った 相似条件を書け。 △ABCDLCBD □ (2) の値を求めよ。 24.2=3x 2x=3 B 3 5章 相似な図形 5章の応用 1 右の図のような鈍角三角形ABCがある。 点Pは点Aを出発 して毎秒0.5cmの速さで辺AB上を点Bまで進む。このとき 2つの三角形ABCと△PBDが相似になることが2回ある。 それは何秒後と何秒後か。 12 cm -P -2.. 32:2 ★ 2 右の図のように, △ABCの辺BCの中点をDとし,辺AB上 に点Eをとり,辺CAの延長と線分DEの延長との交点をFと する。 AC=12cm, DE: EF=2:1のとき, 線分FAの長さ を求めよ。 2 三角形と比・平行線と比次の図で, xの値をそれぞれ求めよ。 □ (1) DE // AC □ (2) a//b//c □ (3) AD//EF//BC A--8-D EF B x=6 中点連結定理の利用 右の図の△ABCで,点D,E,F,Gは それぞれ線分AB, BC, CD, DAの中点である。 12 21 B A+ 29 C 27. d ★ 3 右の図のように, ∠ABC=90° の直角三角形がある。 辺AC上に点Dをとり, 点Bを通り線分BDに垂直な直線上 に∠EDB= ∠CAB となる点Eをとる。 また, 線分EDと辺 ABの交点をFとする。 次の問いに答えよ。 D このとき 四角形DEFGは平行四辺形であることを証明せよ。 B E 4面積比体積比 右の図で, ∠C=90°, AD: DB=3:1である。 点Dから辺ACにひいた垂線をDEとする。 このとき,次の問い 3 □ (1) ADEと四角形 DBCEの面積比を求めよ。 E 9:1 B ★□ (2) △ADE, 四角形 DBCE を辺ACを軸として1回転してできる立体をそれぞれPQとす るとき PとQの体積比を求めよ。 ★ 5 線分の比 右の図の ABCDにおいて, DE: EC=2:1, □F, Gはそれぞれ対角線 AC, 線分AEと対角線BDとの交点 である。 このとき, DG: GF を求めよ。 B' 150 (1) ADBCAFBE であることを証明せよ。 B JC 3cm D 5cm B □(2) AB=6cm, CA = 10cm, ∠DBC = ∠DCB のとき, 線分AFの長さを求めよ。 D 本 4 右の図で、四角形ABCDはAD // BCの台形, Eは辺CDを F D 12に分ける点, Fは辺AD上にあって, BC=FD となる点, Gは線分BDとEFの交点である。 △EDGと四角形ABGF の面積比が27のとき, AF FD を求めよ。 5 右の図で △ABCは, AB=AC=12cm, ∠A=90°の直角 「二等辺三角形, 三角柱ABC-DEFは△ABCを底面とし,高さ が12cmである。 AP=AQ=4cm となるように, 辺AB, AC 上にそれぞれ点P,Qをとり, DR=3cm となるように,辺 AD上に点Rをとる。 点Rを通り, 底面に平行な平面と線分 PE, QF との交点をそれぞれ, S, Tとする。 6つの点A, P, Q,R, S, Tを頂点とする立体の体積を求めよ。 E B 0 G IE 151

回答募集中 回答数: 0
数学 中学生

難しいかもしれませんが この問題の解き方を教えてください🙇🏻‍♀️

り 2 公 B,Cがあり,x座標はそれぞれ- 2, 1,3である。 直線ACとy軸との交点を点Dとし, 線分CD上に2点 C, D また、xの変域が−2≦x≦1のとき,yの変域は0≦x≦2で ある。 ......① 太郎さんと花子さんは次の問題について話している。 次の各問いに答えよ。 問題 2Ⅱ) 人外学高学賃 図のように、関数y=ax(aは定数)のグラフ上に3点A. D A €22 とは異なる点Pをとる。 四角形POBCの面積が3となるときの点Pの座標を求めよ。 -20 1 高 花子: 問題の下線部 ①から,点Aのy座標が分かるね。 太郎:そうだね。 点Aの座標が分かればα=アとなるよ。 次に,点Bと点C の座標も求めておこう。 うーん、四角形POBCの面積を直接求めるのは難しそうだなあ・・・ 花子:まず四角形DOBCの面積を求めてみるのはどうだろう。それなら,3点 A,B,Cの座標からAC/ OBとなるから、求めやすいんじゃないかな。 太郎:そうか! 四角形DOBCの面積はイだから,そこから四角形POBCの 面積が3となるような点Pの座標を見つければ良いね! (1) 会話文のア, イに入る数を答えよ。 (2)点Pの座標を求めよ。 (8-x) 自 80% SW 8 3 大小2つのさいころを投げたとき, 大きいさいころの出た目をα, 小さいさいころの出た bとし,直線y=x-bを考える。 この直線とx軸,y軸の交点をそれぞれA,Bとし,原点を0とするとき、次の確率を求めよ。 (1) 直線の傾きが1以下になる確率 (2) OABが直角二等辺三角形になる確率 (3)点Aのx座標が整数になる確率 DEAREA&&58=0A = 4 図のように, AB=AE=1, AD=2の直方体 ABCDEFGHがある。 点Pが対角線AG上を動く とき、次の問いに答えよ。 (1) AP:PG=3:1のとき, 四角すいP-EFGHの体積を求めよ。 (2) CPの長さが最小になるときのCPの長さを求めよ。 (3)点Pが平面 CHF 上にあるときのCPの長さを求めよ。 (途中経過を図や式で示すこと) H A IB E F

回答募集中 回答数: 0
数学 中学生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 特講 例題 121 ガウス記号を含む方程式 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [2x] = 3 (2) [3x-1] = 2x (3) [2x]-[x] = 3 ★★★☆ ReAction ガウス記号は,n≦x<n+1 のとき [x] = 〃 として外せ 例題120 (1), (2) はガウス記号が1つ[x]=nのときn≦x<n+1 として外す (3)はガウス記号が2つ 場合に分ける 42227=2 TT [x] 幅1ごとに値が変わる 一般にこの部分で考えてみる -1 0 3 1 x 2 n [2x] => n+12/2 n+1 3 幅ごとに値が変わる (ア)(イ) 0 2次関数と2次不等式 11 [2x] =3より, 3≦2x < 4 であるから 32 (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 ≦x<2 xであり、2xは整数より 2x=2,3 3 よって x=1, 2 (3) [2x]-[x]=3…② とする。 (ア)n≦x<nt 1/2(nは整数)のとき 方程式の解は,不等式で 表される範囲になる。 [3x-1] は整数である から, 2x も整数になる。 2x3x-1 より |3x-1<2x+1 より x < 2 x≧1 xを幅 1/2で場合分けす 2n≦2x<2n+1 であるから [2x] = 2n る。 また,[x] = nであるから,②は2 |2n-n=3 よって n=3 ゆえに 3≦x< 2 1 (イ) n+ ≦x<n+1(n は整数)のとき 2 2n+1≦2x2n+2 であるから [2x] =2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって ゆえに n = 2 52 (ア)(イ)より ≦x<3 5 2017/ 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [3x] =1 (2) 2x = [√5] (3) [2x+1]=3x (4) [3x]-[x]=1 220 217

回答募集中 回答数: 0
1/66