学年

教科

質問の種類

数学 中学生

(4)の解き方を詳しくお願いします。 答えは、9分36秒後になります。

【問3】 光さんと妹の愛さんは、 毎週土曜日、家からの道のりが1800mのところにあるピアノ教室 に歩いて通っている。 ある日、光さんは、午前10時40分からのレッスンに間に合うように, 午前10時に家を出発した。 各問いに答えなさい。 I 光さんは,家を出発して一定の速さで8分間歩いたところで忘れ物をしたことに気がつき, それ までの2倍の速さで歩いて家にもどった。 家に着いてから2分後に再び家を出発して一定の速さ で歩き レッスン開始予定時刻の2分前にピアノ教室に到着した。 図1は, 光さんが,午前10時 に家を出発してからx分後の 家から光さんまでの距離をym として, 0≦x≦8のときのxとy の関係をグラフに表したものである。 ただし, 忘れ物をとりに家にもどった以外, 途中で寄り道な どはせず,まっすぐピアノ教室に向かって進んだものとする。 図 1 y 1800- 1600- 1400 1200 1000- 800 600 +400 thes 114a+b=0 -38076=1800 14a+b=0 -38a+b=0 -24a=-1800 -24a=0 a=75 14a+b=0 7.5 380746=0 24 1800 1628 120 120 4=500 200 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 X (1410) (20.0) (38,1800) 100 -240=0 a=0 b=0 75 14 300 ☆ 75 1050 (1)午前10時に家を出発してから忘れ物をしたことに気がつくまでの、光さんの歩く速さは,分 速何m か 求めなさい。 2002-40830 y= -×-20 63(2) 光さんがピアノ教室に到着するまでのグラフを完成させなさい。 1050+6=0 b=-101 1 23 136 18 (25) 2950 1250 6 4500 (3)光さんが、 再び家を出発してからピアノ教室に到着するまでの, xとyの関係を式に表しなさ 7/30 (1) =233 12 23.6×60 118 5 118 23分36秒 5CX 6012 118 5590 590 5) 3,50 45 40 450 (4) 光さんは,再び家を出発してからしばらくして, 光さんが進む道と同じ道を通って自転車で 図書館に向かう兄の健さんに追い越された。 健さんが家を出発したのが午前10時20分, 自転車 の速さが分速 200mで一定であるものとすると, 光さんが健さんに追い越されたのは,光さん が再び家を出発してから何分何秒後か求めなさい。 y=200xtb tb 394 4000 1050 2950 400 y=200-4000 1-1050+4000

回答募集中 回答数: 0
数学 中学生

⭕️の部分がわかりません。教えてください🙏

●三角形の合同を利用して面積を求める 台形の土地の面積をはかる方法 図1は、江戸時代の土地の測量 (検地) のようすを 表したものです。 土地になわをはって、 そのなわの長さから、 台形の土地の面積を求めています。 その方法は、 図2を使って、 次のように説明できます。 台形の土地の面積をはかる方法〉 図1の台形の土地を、図2の台形ABCD で表します。 ここで、AD<BC, DAB= ∠ABC=90°とします。 線分ABの中点をE, 線分 DC の中点をFとして, 線分 EF の位置になわをはります。 このとき AD // EF となります。 図1 「徳川幕府県」より 図2 A G D I ・線分AD上に点 G, 線分 BC 上に点Hを, EFGHと なるようにとり, 線分 GH の位置になわをはります。 はった2本のなわの長さをはかり、その積 (EF×GH) が台形の土地の面積になります。 E F B H 読みとりのポイント 問題文の情報を整理する •∠DAB= ∠ABC=90° ・点Eは線分ABの中点 ・点Fは線分DCの中点 . AD // EF ⚫EFIGH ・台形 ABCDの面積 とEF×GHは等しい。 (1) 図2について, ななみさんは次のように考えました。 (ア)~(ウ) にあてはまる記号を書きなさい。 点Fを通り, 線分ABに平行な直線と, ABJI 直線AD, BC との交点をそれぞれ I J とすると, EF × GH は、 長方形 (ア)の面積になります。 三角形(イ)と三角形 (ウ) が同じ面積なので、 EF × GH は台形ABCD の面積に等しくなります。 (1) DFI (ウ) CFJ EFとGHは、長方形ABJIの横の長さと縦の長さになるので EF×GH は, 長方形ABJIの面積になる。 NO 長方形ABJI と台形ABCDとで異なる部分が,△DFIとCFJである。 長方形 ABJI =五角形ABJFD + ADFI 台形 ABCD =五角形ABJFD+ ACFJ (2) (1)の下線部を次のように証明しました。 証明の過程を書きなさい。 仮定から導けることを 整理する ・四角形 AEFIは 長方形だから, EF=AI EFは長方形ABJI の 横の長さ ・EFIGHより, 同位角が等しいから、 AB // GH 四角形 ABHG は 長方形だから. GH=AB GHは長方形ABJIの 縦の長さ また, にはあてはまる合同条件を書きなさい。 ただし,(イ) (ウ) には,(1)と同じ記号があてはまります。 (証明) ACFJにおいて, LIAB=∠ABC=90°, AB//IJ だから, DIF = ∠CJF=90° 対頂角は等しいから, ① ② ③ より [UF-CT <DFI= ∠CFJ 直角三角形で,斜辺と1つの鋭角がそれぞれ等しいから, ADFI= ACFJ したがって, (イ) =△(ウ) 別解 仮定から, 対頂角は等しいから, DF=CF ∠DFI=∠CFJ AI // BCより、平行線の錯角は等しいから、ID=∠CF ① ② ③より, 1組の辺とその両端の角がそれぞれ等しいから, ADFI= ACFJ (2) 直角三角形の合同条件を ...... 3 確かめる 2つの直角三角形は, 次のどちらかが成り立つ とき合同である。 斜辺と1つの鋭角が それぞれ等しい。 ・斜辺と他の1辺が それぞれ等しい。

未解決 回答数: 1
1/206