学年

教科

質問の種類

数学 中学生

マーカーを引いた(2)の「ある月」が分かりません。 答えは1月になるはずですが、どう求めればいいですか( o̴̶̷᷄ ·̫ o̴̶̷̥᷅ ) 自分で求めることができたものは書いておきました。 2枚目は私が解いた過程の写真です。

【問2】 各問いに答えなさい。 I くみこさんは,各家電の電気代に占める割合に興味をもち、自分の家の月ごとの電気代と9月 とある月の各家電の電気代に占める割合を調べた。 資料1はくみこさんの家の月ごとの電気代を. 資料2は9月とある月の各家電の電気代に占める割合をまとめたものである。 また、9月とある月 の電気代を比較し, 分かったことをメモにまとめた。 〔資料1] 月ごとの電気代 1月 2月 3月 4月 5月 | 12000円 11500円 15000円 11500円 9000円 [資料2] 各家電の電気代に占める割合 9月 ある 冷蔵庫 (1) 冷蔵庫 キエアコン エアコン ( 6月 6000円 |x+y= あ 1.38x+1.8y= あ + 1720 7月 6500円 8月 9月 7200円 8000円 照明器具 テレビ 12% 5% 照明器具 テレビ 12% 7% 10月 8200円 その他 43% 11月 8500円 [メモ] ・ある月の冷蔵庫とエアコンの電気代は、9月と比べ, 冷蔵庫は38%, エアコンは80% 電気 代が増加している。 ・ある月の冷蔵庫とエアコンを合わせた電気代は,9月の冷蔵庫とエアコンを合わせた電気代 と比べ1720円増加している。 その他 40% くみこさんは9月と, ある月の各家電ごとの電気代はいくらなのかということに疑問をもち,資 料 1.2とメモから電気代に占める割合の高い冷蔵庫とエアコンについて 9月の冷蔵庫の電気代 円 エアコンの電気代を1円として,次のような連立方程式をつくった。 12月 9500円 あ に当てはまる適切な数を書きなさい。 3200 (2) ある月の冷蔵庫の電気代はいくらか.求めなさい。 また,ある月とは、 何月か求めなさい。 冷蔵庫... 2760円 ある月... ? ? 11 図1で、立体Pは、 底面の円の半径が2cm 高さが3cmの円柱 futout

回答募集中 回答数: 0
数学 中学生

(6)の④がわかりません😢 教えてください🙇‍♀️

(4) 表Iより 電気抵抗が5Ωのとき, 0.60A の電流が流れたので, オームの法則より, 5 (Ω)×0.60 (A) = につなぐ。 3 (V) ⑥ 発生する熱の量は電流を流した時間に比例する。 (5) 解答例の他に, 自由電子伝導電子・価電子,でもよい。 118 (6) ① ② 表 I において, 10 (Ω) 5 (Ω) になるので、電気抵抗と電流の関係は反比例。 表ⅡIにおいて, = 2 (倍), (6) 1① ア できる水の質量は, 100(g)× (3) ①1イ 電圧が2倍になると電流は2倍になるので、電圧と電流の関係は比例。表Ⅲにおいて、 1 ときの2倍になるので、水の流れにくさ(電気抵抗)は 2 (右図) 0.30 (A) 1 2 0.60 (A) = (2) I (倍)より、電気抵抗が2倍になると電流は! 1 ③ キ 10 (V) 5 (V) 0.84 (L) 0.42 (L) 間に管を通る水量は比例。 ③ 表Ⅲより, 水位の差が 7.0cm のとき, 1分間に1本の管を通る水量は0.84Lな ので, 1分間に2本の管を通る水量は 0.84 (L)×2(本) 1.68 (L) よって, 1分間にdから出る水量も = 2 (倍) より 水位の差が2倍になると1分間に管を通る水量は2倍になるので、水位の差と1分 ④ケ (7) 4(L) 1.68L ④ 図ⅣVのように2本の管をつないだとき, 1分間に2本の管を通る水量は、1本の管だけをつないだ = = 2 (倍), 0.30 (A) 0.15 (A) 倍になる。 (7) 0.2W の仕事率で, 1分間 = 60 秒間に行う仕事の大きさは,0.2(W)×60(s) = 12 (J) 12J の仕事で 30cm = 0.3mの高さまで運ぶことができる水の重さは, 12 (J) 20.3(m) = 40 (N) 40N の力で持ち上げることの 40 (N) 1 (N) x 34 ②ウ (4) ⓐ3 ⑥ ア (5) 電子 7.0 (cm) 3.5(cm) 2 2 (倍)より、 = 2 (倍), #LINE 4000 (g)より, 4kg 4kg の水の体積は4L。

回答募集中 回答数: 0
数学 中学生

解説を見ても分かりません。どうか教えてください🙏

第2章 関数 9 [1] のように 2点 A (8, 0). B(0.8) があり、 分 OA. OB を半径とするお うぎ形OAB がある。 また、 点 P(1, 0) と, AB 上に座標が 1である点Qがある。 なお, ある点の座標と 座標がともに整数であるとき. その点を格子点という。 [2] のように. おうぎ形OAB と直線 12/2x+4がある。 このとき [2] の灰色をつけた部分の 内部および周上にある 格子点の個数を求めな さい。 [1] pa-37 このとき、次の(1)~(4)の各問いに答えなさい。 線分PQの長さを求めなさい。 [ 2] B(0,8) (2) 両端の点を含む線分PQ上にある格子点の個数を求め ださい。 おうぎ形 OAB の内部および周上にある格子点の個数 を求めなさい。 ya- 10 OP(1,0) A (8,0) U B(0,8) A(8,0) <佐賀県 > 9 (1)3√7 三平方の定理とつき PQ² = 038 - OP²-8²-1²-63 V P (2)8個 (3)58個 (4).38個 【解き方】 (1) PQ=3V7 XO (1) (2) 72 <PQ² < 82 D. 7 <PQ <8 線分PQ上の格子点の座標は0,1,2,3,4,5.6メージ 7だから, 求める個数は8個 x58²1², (3) 点P、Qと同様にして、点P2(2, 0) と, AB 上に座×357 標が2である点Q2. P3 (3,0) と点 Q3, ... とする。 •P2Q2²=0Q22-OP2²=82-22=60 7 <P2Q2 <8 P3Q3²=0Qg2 -OP3²=82-32-55 PQ2=Q^OP²=82-42=48 PsQ52=0Q²2-OP52=82-52=39 また,P'(0, 1) と, AB 上に y 座標が1である点 Q 同様にして、点P'^ (0, 2) AB 上に座標が2である点 Q2. P3 (0,3) 点 Q3,・・・とする。このとき ・OB, OA に関して, 格子点は, 9x2-1=17.⑩ PQ, P'Q' に関して, 既に数え上げた格子点を除いて、 (8-1)x2-1=13...① 以下同様にして、 P2Q2. P2Q2 に関して, (8-2) x2 - 1 = 11….. ② ・P3Qs, P'Q'3 に関して (8-3)×2−1 = 9... ③ ・P4Qs, P'Q' に関して (74)×215... ④ PsQss P'Q's に関して (7-5)×21=3...⑤ ⑩〜⑤より 求める格子点の個数は, 17 + 13 + 11 + 9+5+ 3 = 58 (個) y BC (4) おうぎ形OAB の内部お よび周上にある格子点のう ち, 灰色がついていない部 7<P3Q3 <8 6<P4Q₁ <7 6 <PsQs <7 37- 96 関心の図形との融合問題 210) P1 P P' O P P₂P,P.P は軸上の点である。 (2016 問いに答えなさい。 ださい。 分は直線y=- 1x +40 2 下側でその部分の格子点の 個数は, x=0,1のとき,それぞ れ4 (個) よって, 8個 x=2,3のとき,それぞ よって 6個 れ3(個) z= 4,5のとき, それぞ よって 4個 れ2(個) x=6,7のとき, それぞれ1 (個) x=8のとき,0個 したがって, 8+ 6 +4 + 2+ 0 = 20 (個) 以上より, 灰色の部分の格子点の個数は, 58-20=38(個) n上をA→C をPとする。 に平行な直線と直線 積をSとする。 のときSの値を の座標をすべて y=- 1-1212x+4 よって2個 関数 フ 点 図 る直 として点 の面積と という CI HEW 上に 面積が

回答募集中 回答数: 0
1/8