学年

教科

質問の種類

数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

この大門6の問題の1.2.3.4と問題があるんですが 公式を使っても答えがわからないのですがこの問題の解き方を教えてください。できたら答えを教えてください

ty 9つのマスに入る数が1以上の整数であるとき, 図3の魔方陣を考える。 左の縦列と真ん中の横列を見ると、共 通のマスが1つあるため, 共通のマス以外の2つのマスの数の和がどちらも同じであることがわかる。このこどか ら、Bに入る数は ( ① ) であることがわかる。 この考え方を利用すると, 1列の3つの数の和は (⑤) である ことがわかる。 12 fr D 10 7 6 11 1 5 C 1~16までの整数が一つずつ入る図4のような4×4の魔方陣を考える。 右端の縦列と下から二番目の横列を見ると、 共通のマスが1つあるため, 空欄の2つの マスの差がわかる。 マスに入る数は、 1~16であることから、 C に入る数は (⑥) であることがわかる。 また,同様に考えると,Dに入る数は (⑦) であることがわ かる。 図4 [6] 図1のような容器 A, 容器 B, 容器C がある。 容器 A は半径4cm, 高さ8cmの円すい形, 容器B は半径4cm, 高さ8cmの円柱形, 容器 C は半径4cmの半球形をしている。 以下の問いに答えなさい。 容器A 容器B 容器C 4cm 8 cm/ 4cm 18cm <図1> 4cm (1) 図2のような半径12cm, 高さ24cmの円すい形をした容器Xがある。これに, 容器Aで水を注いで容器X を満たすには,何杯入れるとよいですか。 (2) 図3のように、 容器Xの底面に平行な平面で切った円すい台の形をした容器Y を作りました。 これに, 容器A で水を1杯注いだのちに, 容器B で水を6杯注ぐ と、容器Yの水の高さは何cmになりますか。 (3) (2) のあとに,容器Bと容器 C で, 容器Y を水で満たす。 容器 B をできるだ け多く用いるとき,それぞれ何杯ずつ注ぎますか。 (4) 図4のように, 容器Yに半径2cm, 高さ8cmの鉄の円柱を4本入れる。 これに, 容器Bと容器C を用いて, 高さ8cmまで水を注ぐとき, 容器B と容器Cを注 ぐ回数の差が最も少ない入れ方は,それぞれ何杯ずつですか。 容器X 容器 Y 124cm I I 12cm_. <図2> 4cm 1 <図3> 2cm 18cm <図4>

回答募集中 回答数: 0
数学 中学生

これはどうすればOKになりますか? 分からないので教えてください🙇🏻‍♀️՞

課題 12の問題を意図した通りに設計してみましょう。 (設計後、解答も書く) }には自然数 {__}には整数(符号付き) には有理数 -11 この辺で A 12 > ※元の問題: 表現するよ 右の図のように、2つの関数y=az', y=x+bのグラフがあり, その交点A, Bのæ座標は それぞれ−2と4である. ・・・中略・・・ 3点O, A, B を結んでできる 三角形の面積を求めなさい. 右の図のように,2つの関数y=ax,y=6x+bのグラフがあり, その交点A,Bのx座標はそれぞれ-1と22である. ・・・中略・・・ 3点0, A,Bを結んでできる角形の面積を求めなさい . y=ax2 ③高さの合計: 12 とする Bのx座標は とする ④Aのx座標を を使って表す 光 t ①AOABの面積24) とする 12$ 2 ---- (1) ここで,2次関数y=2x2 とする. <2x ²^<<3. すなわち, a 2とする。 (2) 次に, 切片公式と②で設定した数より 方程式を立てて解く. 2x² = 6x+8 2x²-6x x-3 a B7) 2x+6) 成立しないよ 46 ②共通の底辺とする ---- = = = 8 には文字式を入れる. 例えば, 8 38 ) と決定する x = 11 (3) 最後に,決定したと傾き公式を使って 傾きを求める. e=y=mx+x_P10 n y 1 Þ 傾き: m=a(p+q) 切片:n=-apa (4) 実際に問題を解いてみて意図した通りに 設計されたことを確認する. 21-11+22) = 44 44-22=22) +1 11×8×2 ・44 IC 22

回答募集中 回答数: 0
数学 中学生

この問題の解き方は合っていますか?

課題 12 の問題を意図した通りに設計してみましょう。 (設計後, 解答も書く) }には自然数 {__}には整数(符号付き)には有理数 -11 12 > ※元の問題: 右の図のように、2つの関数y=ax2, y=x+bのグラフがあり, その交点A,Bのæ座標は それぞれ−2と4である. ・・・中略・・・ 3点0, A, B を結んでできる 三角形の面積を求めなさい. 右の図のように,2つの関数y=az', y = 6_z+bのグラフがあり, A-t t ①△OABの面積:24 ) とする その交点A,Bのz座標はそれぞれ一日と22)である。 ・・・中略・・・ 3点O, A, B を結んでできる角形の面積を求めなさい。 ・・・・ y=ax2 ③高さの合計:12) とする Bのx座標はtとする ④Aの座標を を使って表す ---- (1,2次関数y=2x②とする. 2x² - 6x すなわち, a= 2とする。 (2) 次に, 切片公式と②で設定した数より 方程式を立てて解く. 2x 6x+8 「24」でくくる」 x-3 a = = = = 8 Bt, 2x+6) ②共通の底辺とする 8 3+8 例えば, には文字式を入れる. と決定する x = 11 (3) 最後に,決定したと傾き公式を使って 傾きを求める. MJ₁ |ℓ:y=mx+n -0 y WH P Þ 傾きm=a(p+q) 切片: n=-apa (4) 実際に問題を解いてみて意図した通りに 設計されたことを確認する. 4 11x8x2 2(-11+22) =44-22=22(傾 ・IC 44 22

回答募集中 回答数: 0
1/18