学年

教科

質問の種類

数学 中学生

例題85 (2)の解説について質問です。 なぜ場合分けの時に「0<a≦2」とおくのですか?問題文に「正の定数a」と書いてあるので0<になるのは分かりますが、なぜ≦2なのかが分かりません。

146 基本 例題 85 2次関数の係数決定 [最大値・最小値] (1) 00000 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 | (1) を定めよ。 また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 a の値を求めよ。 基本 80, 82 重要 86 指針 関数を基本形y=a(x-p)+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4 (2) (最小値)=11 とおいた方程式を解く。 (2)では, 軸x=α (a>0) が区間0≦x≦2の内か外かで場合分けして考える。 HART 2次関数の最大・最小 グラフの頂点と端をチェック 重要 例題 定義域を0≤ とき、定数 この間 指針 形が変 a=0 (最大 なお, いよ 解答 関数の (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 よって, 1≦x≦4においては, YA 最大 k+8 右の図から、x=2で最大値k+8 4 012 x 区間の中央の値は 1/2で あるから, 軸 x=2は区 間 1≦x≦4で中央より 左にある。 [1] a 解答 f(x) [2] a をとる。 y=f ゆえに k+8=4 線と 最小 最大値を4とおいて, よって k=-4 このとき, x=4で最小値-4 をとる。 (2) y=x2-2ax+α² -2aを変形すると y=(x-a)2-2a [1] 0<a≦2のとき, x=αで 最小値 -2αをとる。 kの方程式を解く。 は. をと [1] YA 軸 < 「αは正」に注意。 <0<a≦2のとき, 軸x=αは区間の内。 11 -2a=11 とすると α = a 2 0 2 x →頂点x=αで最小。 これは0 <a≦2を満たさない。 [2] 2<αのとき, x=2で の確認を忘れずに。 2a最小 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11 とすると a²-6a-7=0 [2] YA 2-6a+4 最小 a <(a+1)(a-7)=0 これを解くと a=-1,7 02 x 軸 2 <αを満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 2<αのとき, 軸x=αは区間の右外。 →区間の右端 x=2で最 小。 線と は をと これ これ 以上 注意 問題文 f(x)= 練習 (1) 2次関数y=x2-x+k+1の1≦x≦1における最大値が6であるとき、定数 ③ 85 kの値を求めよ。 EX61 (2) 関数 y=-x2+2ax-a-2a-1-1≦x≦0) の最大値が0になるような定数 α の値を求めよ。 練習 定義 ③ 86 と

未解決 回答数: 0
数学 中学生

中二、式の計算の問題です。学校に提出して点数を付けられるので、間違っていないかこれで正しいかしっかりと確認して欲しいです。間違ってたら教えてください。よろしくお願いします

数学レポート課題 ① (第一章 式の計算) 連続する3つの偶数の和は、6の倍数になることを、 整数 n を使って説明しなさい。 連続する30の偶数のうち真ん中の数をとする。 連続する3つの偶数は2n-2.2n.2n+2と表せる。 これらの和は(2n-2)+2n+(2n+2)=6n. ここでは整数だからonは6の倍数である。 ●よって連続する3つの偶数の和は6の倍数である。 各位の数字の和が3の倍数である3ケタの整数は、3の倍数であることを説明しなさい。 aを1~9の整数、l.Cを0~9の整数にすると 379の整数は1000+102+Cと表せる。 また各位の数の和が3の倍数なので、athtcは3の倍数である。 その和は1000+10h+C=13×33+170+13×3+1)h+c =3(33a+3h)+a+h+c 右の図のように、 カレンダーの 5つの数を囲むとき、 囲まれた5 つの数の和は真ん中の数の5倍に なることを説明しなさい。 ここで 33.0+3lは整数なので3(33a+3h)は3の倍数である。 またa+b+cも3の倍数なので、3(330+)+ath+Cは3の倍数で よって、各位の数字の和が3の倍数である3ケタの整数の和は3の倍数 ある。 日 月 火 水 木 金 土 である。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 連続する4つの奇数の和は8の倍数になることを、 整数 n を使って説明しなさい。 nを整数とすると連続する4つの奇数は、2n+1.2n+3.2n+5.2n+7 5つの数のうち真ん中をれとする。 と表せる。 その和は(2n+1)+(2n+3)+(2n+5)+(2n+7)=8n+16 =8(n+2) ここで+2は整数だから、8(n+2)は8の倍数である。 よって連続する4つの奇数の和は8の倍数である。 5つの数は n-7.n-1.nn+1.n+7で表せる。 その和は(n-1)+(n-1)+h+(n+1) +(n+7)=5n. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ここでは整数だから5には5の倍数である。 よって、5つの数の和は5の倍数である

未解決 回答数: 1