学年

教科

質問の種類

数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0
数学 中学生

至急‼️‼️この問題どなたか教えください! 小学生でも分かるような感じでお願いします(笑)↑(投稿者は理解力がないため)

ぞれ4日と6日だった。このとき、20人の生徒の欠席した日数の中央値を求めなさい。 3. (2) まさやさんとしおりさんは、数学の授業で次の [課題] について考えた。 下の「会話」は、その とき2人が話し合った内容である。 [課題] 1から6までの目がある大小2個のさいころを同時に1回投げ, 大きいさいころの出た 目の数をα. 小さいさいころの出た目の数をもとする。このとき、起こる確率からをひ いた差が正になることがらを答えなさい。 ただし、それぞれのさいころについて どの目が出ることも同様に確からしいものとする。 [会話] まさやさん:いろいろなことがらを試してみる必要がありそうな課題だね。 しおりさん: 例えば... 「a+b 5 となる」はどう? まさやさん:a+b≦5となるのはア通りだから,その起こる確率から1をひいた差 は負になるね。 しおりさん: その他についても考えてみましょう。 アにあてはまる数を求めなさい。 (2 √bの値が自然数となる確率を求めなさい。 3 [課題] の答えとして, まさやさんは「αとがどちらも素数になる」 と答え, しおりさ 「その値が整数になる」 と答えた。 このとき、どちらのことがらが [課題] の答えとしてふさわしいといえるか。 次のア ち, 適切なものを1つ選び, 解答用紙の( の中に記号で答えなさい。 また、選んだ理由を、 それぞれのことがらの起こる確率を分数で示して説明しなさい。 ア まさやさんが答えたことがら イ しおりさんが答えたことがら -2-

解決済み 回答数: 1