学年

教科

質問の種類

数学 中学生

この答えが 1番がY =20で、2番が 5秒後から9秒後まで なんですけど何でか教えてください

(3) 図のように、AB=6cm, AD=4cmの長方形ABCD と、 1週 が 8cmの正方形から1週が4cmの正方形を切り取った形の図形 EFGHIJ がある。 点B、C、F、Gは同じ直線上にあって、CDと EFは重なっている。 図形 EFGHIJは固定したまま、長方形 ABCD を直線にそって、矢印の方向に、頂点Bが頂点Gに重なるま で、毎秒1cmの速さで移動させる。 図11は、移動の途中のようすを 示したものである。 H dem D dem 6cm E 4cm Sem B CF Semi- 図 H 長方形ABCDが移動を始めてからで秒後の、長方形ABCD と図 A D 形 EFGHI が重なった部分の面積を!cmとする。 E このとき、次の①、②の問いに答えなさい。 jem ただし、長方形ABCD が移動を始めるとき、および、頂点Bが頂 BFC G 点Gに重なったときは、y=0 とする。 図Ⅱ なお、下の図を必要に応じて使ってもよい。 ① z=6のときの”の値として正しいものを、次のアからオまでの中から一つ選びなさい。 ア y=20 1 y=22 ウy=24 I y=26 *y=28 ② 長方形ABCD と図形 EFGHIJ が重なった部分の面積が18cm以上になっているのは、 長方形 ABCL が移動を始めて何秒後から何秒後までか、次のアからオまでの中から一つ選びなさい。 ア 12/23秒後から 21/27秒後まで イ 9 2 一秒後から9秒後まで ウ 5秒後から1秒後まで 19 エ 5秒後から9秒後まで オ 5秒後から秒後まで

回答募集中 回答数: 0
数学 中学生

中学3年相似の証明です (2)がわからないです! 相似苦手なので分かりやすく教えて頂けると幸いです 早めだと助かります!

3 右の図1のように, AB > BCの平行四辺形ABCDが ある。 辺BCの延長線上にAB=BE となる点Eをとる。 また,辺AB上にAF=BCとなる点Fをとり,点Eと点D, 点と点Fをそれぞれ結ぶ。 ただし, BC > CE とする。 このとき,次の(1),(2)の問いに答えなさい。 図 1 ASA A AD JA OT B C E (1) BEF=△CDE となることの証明を,下の の中に途中まで示してある。 (a) (b)に入る最も適当なものを、あとの選択肢のア~エのうちからそれぞれ1つ ずつ選び、符号で答えなさい。 また, (c) には証明の続きを書き, 証明を完成させなさい。 ただし, に示されている関係を使う場合、番号の①~⑦を用いてもか の中の①~⑦ まわないものとする。 0037 証明 △BEF と △CDEにおいて, OOSI 仮定より, AB=BE AF =BC BF=AB-AF (a) =BE-BC 1, 2, 3, ④より, BF= (a) 平行四辺形の (b)は等しいから, ABCD 81 ①, ⑥ より, BE=CD 8 …⑦ 008 00 ・文会 STAT T - (a) の選択肢- ア AD イ CE ウ EF エ ED 18 (b) の選択肢 *A X ア 2つの辺 イ 対角線 ウ 対辺 (向かいあう辺) エ 対角(向かいあう角) ABA 10 JJ3 mu (2) 右の図2のように,辺CDと線分EFとの交点を Gとし, 点Bと点Gを結ぶ。 図2 A D このとき、次の 「つ」 にあてはまるものを答えな さい き で F JACO AF:FB=2:1, 平行四辺形ABCDの面積が 36cm²であるとき, BEGの面積はつ cm² である。 G 出 E

回答募集中 回答数: 0
数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0