学年

教科

質問の種類

数学 中学生

8(3)と11と13(1)(2)のやり方を教えてほしいです🙇‍♀️

0 35 ① 36 ② 37 (3) 38 ④ 39 5 40 641 ⑦ 428 439 44 〔式の計算 (1・2年)〕 7 次の計算をしなさい。 (1) 11 (3a-1)/(a+1) 4 2x-1x+1 (2) 3 +. [ たちばな〕 (13) ☆2の値を求めなさい。 9y= -(PS・数学 4 〔栄徳〕 1~ 〔名工〕 太字 数字 の意 では 2-5zをπについて解きなさい。 3 10 次の問いに答えなさい。 (1)1本円の鉛筆5本と1冊4円のノート3冊の 合計の金額は250円よりも高い。 これらの数量の関 係を不等式で表しなさい。 [修文学院〕 つい 23- [啓明学館〕 4 【産だ の個数は 6 (4) 2 かで、素数は (3)-1+2x+4 2x-3yx3-2(x-y) 3x+y_2x-y [瑞穂] 9 [桜花] (5) 〔至学館〕 5 3 G (6)(3ab)3ab2xa5 〔椙山〕 (7)(20)÷1/1/30°×1-(°6) 2} [名古屋] ●位の数をそれぞ (2) ある整数から3を引いて5倍すると, 35より大 きく42より小さくなるという。 この整数は [アイ] である。 〔誠信〕 11 T君は家から学校までの道のりを、行きは平均時 速10kmで走り, 帰りは平均時速4kmで歩いて帰っ た。 行きと帰りを合わせた平均時速を求めなさい。 た だし, 行きと帰りの道のりは同じとする。 〔東邦] 12468, 10, 12のような連続する5つの偶数 の和が10の倍数になることを,次のように説明した。 文章中の6にあてはまる数を,下のア~ エからそれぞれ選びなさい。 の ごと に 「い 上 (8) (3xy)-9x (-2x) 3 〔高蔵〕 なお、3か所のbには,同じ数があてはまる。 [人環大附岡崎〕 [へ] い。ただし、 (9) 3(3x+4y)-2(2x-6y). 〔名工〕 (10) 5(x-2y)- (3x-y) [名国際] コである。 [社 ■値はいくつお 2x+5y x-y (11) 3 4 [名城大附〕 /(S) 連続する5つの偶数のうち、いちばん小さい偶数 を2n とすると,いちばん大きい偶数は2n+α と表される。 入 (12) 2x+5y+ 3 -3x+y 4 〔栄徳〕 このとき, 連続する5つの偶数の和は10(n+b) と表される。 〔名女 (13) 全部で 〔愛産大三 . 4つ り、2+30 (15) 9a2bx2a÷6b (16) 2(4a-5b)-(3b-a) 3 2x+5x-5 6 主人 --2 [聖霊] (14)3(5x-4y)-2(7x-y) 〔〕 〔誠信] n+b は整数だから, 10 (n+6)は10の倍数 である。 したがって, 連続する5つの偶数の和は、10の 倍数である。 は分散である。 動 [修文学院〕 a ア. 2. 4 ウ. 6 エ.8 までのイベ (17) 2x-y x-4y b ア. 2. 4 ウ.6 エ 8 の差を記録 4 [黎明〕 5 (春日 (18) 3x-1 x-5 42 [日福大付〕 土曜日 日曜 13 1から4までの数字が書かれた面積3cm 2 の三角 形があり、 図のように並べていく。 あとの問いに答え さい 95 ② ) 〔高蔵〕 (19) (-2a)³× (-65)÷2(ab)² 〔人環大附岡崎〕 +12 コである。 (20) 24a626ab1/12a2 a² 0-30 (21) 3a-ba-2b 43 8 次の問いに答えなさい。 [光ヶ丘〕 [愛産大三河] 本 A 12/3 13/34 1番目 2番目 3番目 4番目 L 12/34/12/ かった日 人数の OFF (1) x+3y 2 xy 15+ の値を求めなさい。 X Y 〔椙山〕 (2) x=2024のとき, X I + の値を求めなさい。 88 184 253 [桜花] (3) 記号☆をa b =α+62と定めるとき, 5番目 6番目 -35- (1) 2024番目の図で一番右の三角形に書かれた数字と して正しいものを,次のア~エから1つ選びなさい。 ア. 1.2 ウ.3 エ. 4 (2) 並べた図形の面積が99cmとなるとき 1の数 字が書かれた三角形を何枚用いているか,正しいも のを,次のア~エから1つ選びなさい。 te T 2 a

未解決 回答数: 1
数学 中学生

中学3年相似の証明です (2)がわからないです! 相似苦手なので分かりやすく教えて頂けると幸いです 早めだと助かります!

3 右の図1のように, AB > BCの平行四辺形ABCDが ある。 辺BCの延長線上にAB=BE となる点Eをとる。 また,辺AB上にAF=BCとなる点Fをとり,点Eと点D, 点と点Fをそれぞれ結ぶ。 ただし, BC > CE とする。 このとき,次の(1),(2)の問いに答えなさい。 図 1 ASA A AD JA OT B C E (1) BEF=△CDE となることの証明を,下の の中に途中まで示してある。 (a) (b)に入る最も適当なものを、あとの選択肢のア~エのうちからそれぞれ1つ ずつ選び、符号で答えなさい。 また, (c) には証明の続きを書き, 証明を完成させなさい。 ただし, に示されている関係を使う場合、番号の①~⑦を用いてもか の中の①~⑦ まわないものとする。 0037 証明 △BEF と △CDEにおいて, OOSI 仮定より, AB=BE AF =BC BF=AB-AF (a) =BE-BC 1, 2, 3, ④より, BF= (a) 平行四辺形の (b)は等しいから, ABCD 81 ①, ⑥ より, BE=CD 8 …⑦ 008 00 ・文会 STAT T - (a) の選択肢- ア AD イ CE ウ EF エ ED 18 (b) の選択肢 *A X ア 2つの辺 イ 対角線 ウ 対辺 (向かいあう辺) エ 対角(向かいあう角) ABA 10 JJ3 mu (2) 右の図2のように,辺CDと線分EFとの交点を Gとし, 点Bと点Gを結ぶ。 図2 A D このとき、次の 「つ」 にあてはまるものを答えな さい き で F JACO AF:FB=2:1, 平行四辺形ABCDの面積が 36cm²であるとき, BEGの面積はつ cm² である。 G 出 E

回答募集中 回答数: 0
数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0