学年

教科

質問の種類

数学 中学生

式の立て方を教えて欲しいです😭🙏

□ (1) 3けた自然数があり,十の位は4で,各位の数の和は百の位の数の6倍である。 百の位の数と一の位の数を 入れかえてできる3けたの自然数は,もとの自然数より396大きい。 もとの自然数を求めなさい。 式)」入外 □(2)1800円持ってケーキを買いに行った。2種類のケーキ A,Bを,Aを4個とBを3個買おうとしたところ120 円不足した。 そこで, Aを2個とBを5個買うことにしたら、 代金はちょうど1800円であった。 A1個, B1個 の値段をそれぞれ求めなさい。 (式) A 直線 AOO 〕,B[ 〕 □(3) 給水管 A, Bと水そうがある。 Aからは毎分8L, Bからは毎分6Lの水が出る。 また, A, B をいっしょに 使って水そうをいっぱいにするには15分間かかる。 いま, 水そうにAだけで水を入れ, 続いてBだけで水を入 れたら、いっぱいになるまでには,最初から31分間かかった。 Aで入れた水の量, Bで入れた水の量をそれぞ れ求めなさい。 (式) A[ ), B( □(4)ある列車が,450mの鉄橋を渡りはじめてから渡り終わるまでに25秒かかり,また,同じ速さで700mのトンネ 【ルに入りはじめてから出てしまうまでに35秒かかった。この列車の長さと,速さをそれぞれ求めなさい。 (式) して 6 長さ[〕速さ[ □(5) 2種類の製品 A,Bを作っている工場がある。先月生産した製品AとBの個数の比は5:8であった。今月は 先月に比べて,製品Aの生産個数は8%増加し,製品Bの生産個数は5%減少したので、今月の製品AとBを合 わせた生産個数は455個になった。 今月生産した製品 A,Bの個数をそれぞれ求めなさい。 (式) 製品 A [ 〕 製品B [ ]

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

3 右の図1で,点Oは原点 曲線は 関数y= 1 xのグラフを表している。 点Aは曲線上にあり, x座標は-6である。 曲線上にある点をPとする。 図1 20- 15- 次の各問に答えよ。 10- A 〔問1] 次の ① と ②に当てはまる数を, 下のアークのうちからそれぞれ選び, 記号で答えよ。 P 点Pのx座標をα y 座標をbとする。 αのとる値の範囲が-3≦a≦1のとき, bのとる値の範囲は, ① ≤bs ②2 である。 -5 O+ 5 9 3 3 ア イ ウ I 0 4 2 4 1 1 オ 力 キ 4 2 32 ク 160 〔問2〕 次の 3 と ④に当てはまる数を, 下のア~エのうちからそれぞれ選び, 記号で答えよ。 右の図2は,図1において, 図2 20- 15- x座標が点Pのx座標と等しく, y 座標が 点Pのy座標より4大きい点をQとした 10- A 場合を表している。 点Pのx座標が2のとき 2点A, Qを通る直線の式は, y= 3 x+ 4 である。 P -5 O+ 5 1 1 (3 ア 2 イ ウ H - 2 2 2 4 ア 6 イ 5 ウ 4 I 1 〔問3〕 図2において,点Pのx座標が3より大きい数であるとき,点Qを通り傾き1/12 の 直線を引き, y 軸との交点をRとし, 点と点A, 点Aと点R, 点Pと点Q. 点Pと点Rをそれぞれ結んだ場合を考える。 △AORの面積が△PQRの面積の3倍になるとき、点Pのx座標を求めよ。 -3-

回答募集中 回答数: 0
数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

2 Sさんのクラスでは,先生が示した問題をみんなで考えた。 次の各問に答えよ。 [先生が示した問題] a b を正の数とする。 右の図1で, △ABCは,∠BAC=90°, AB=acm, AC=bcmの直角三角形である。 右の図2に示した四角形AEDCは, 図1において,辺BCをBの方向に延ばした 直線上にありBC=BDとなる点をDとし, 図1 図2 A B A B △ABCを頂点Bが点Dに一致するように平行移動させたとき, 頂点Aが移動した点をEとし,頂点Aと点E,点Dと点Eを それぞれ結んでできた台形である。 四角形AEDCの面積は, △ABCの面積の何倍か求めなさい。 〔問1] 次の |の中の「う」に当てはまる数字を答えよ。 [先生が示した問題]で,四角形AEDCの面積は, △ABCの面積の う 倍である。 Sさんのグループは, [先生が示した問題] をもとにして,次の問題を作った。 [Sさんのグループが作った問題] a, b, xを正の数とする。 E D 右の図3に示した四角形AGHCは,図1において, 辺ABをBの方向に延ばした直線上にある点をFとし, 図3 C △ABCを頂点Aが点Fに一致するように平行移動させたとき, 頂点Bが移動した点をG, 頂点Cが移動した点をHとし, 頂点Cと点H点Gと点Hをそれぞれ結んでできた台形である。 右の図4に示した四角形ABJKは,図1において 辺ACをCの方向に延ばした直線上にある点をIとし, △ABCを頂点Aが点Iに一致するように平行移動させたとき, 頂点Bが移動した点をJ, 頂点Cが移動した点をKとし, 頂点Bと点J,点Jと点Kをそれぞれ結んでできた台形である。 図3において, 線分AFの長さが辺ABの長さのx倍となる ときの四角形AGHCの面積と, 図4において,線分AIの 長さが辺ACの長さのx倍となるときの四角形ABJKの 面積が等しくなることを確かめてみよう。 A B F G 図 4 K I J C A B 〔問2〕 [Sさんのグループが作った問題] で, 四角形AGHCの面積と 四角形ABJKの面積を, それぞれα, b, x を用いた式で表し, 四角形AGHCの面積と四角形ABJKの面積が等しくなることを証明せよ。 -2-

回答募集中 回答数: 0