学年

教科

質問の種類

数学 中学生

それぞれの問題の解説がほしいです教えてくださった方フォローいいねベストアンサーします

2 Sさんのクラスでは,先生が示した問題をみんなで考えた。 次の各問に答えよ。 [先生が示した問題] a b を正の数とする。 右の図1で, △ABCは,∠BAC=90°, AB=acm, AC=bcmの直角三角形である。 右の図2に示した四角形AEDCは, 図1において,辺BCをBの方向に延ばした 直線上にありBC=BDとなる点をDとし, 図1 図2 A B A B △ABCを頂点Bが点Dに一致するように平行移動させたとき, 頂点Aが移動した点をEとし,頂点Aと点E,点Dと点Eを それぞれ結んでできた台形である。 四角形AEDCの面積は, △ABCの面積の何倍か求めなさい。 〔問1] 次の |の中の「う」に当てはまる数字を答えよ。 [先生が示した問題]で,四角形AEDCの面積は, △ABCの面積の う 倍である。 Sさんのグループは, [先生が示した問題] をもとにして,次の問題を作った。 [Sさんのグループが作った問題] a, b, xを正の数とする。 E D 右の図3に示した四角形AGHCは,図1において, 辺ABをBの方向に延ばした直線上にある点をFとし, 図3 C △ABCを頂点Aが点Fに一致するように平行移動させたとき, 頂点Bが移動した点をG, 頂点Cが移動した点をHとし, 頂点Cと点H点Gと点Hをそれぞれ結んでできた台形である。 右の図4に示した四角形ABJKは,図1において 辺ACをCの方向に延ばした直線上にある点をIとし, △ABCを頂点Aが点Iに一致するように平行移動させたとき, 頂点Bが移動した点をJ, 頂点Cが移動した点をKとし, 頂点Bと点J,点Jと点Kをそれぞれ結んでできた台形である。 図3において, 線分AFの長さが辺ABの長さのx倍となる ときの四角形AGHCの面積と, 図4において,線分AIの 長さが辺ACの長さのx倍となるときの四角形ABJKの 面積が等しくなることを確かめてみよう。 A B F G 図 4 K I J C A B 〔問2〕 [Sさんのグループが作った問題] で, 四角形AGHCの面積と 四角形ABJKの面積を, それぞれα, b, x を用いた式で表し, 四角形AGHCの面積と四角形ABJKの面積が等しくなることを証明せよ。 -2-

回答募集中 回答数: 0
数学 中学生

(3)②と③の問題の解き方教えてください! ちなみに答えは②√5③25/12です。 図形に色々書いてあって見ずらいかもしれませんがすみません💦

【問4】 各問いに答えなさい。 図1は、円の円周上に3点A, B, C があり, 線分AB が円Oの直径であり, AとC, BとCをそれぞれ結んだも のである。 ∠Cの二等分線と線分AB, 円0との交点をそ れぞれD, Eとする。 AC=3cm, BC=6cm とする。 (1) 図1において, ∠ABC=α°とするとき, 大きさを表す式を,次のア~エから1つ選び, きなさい。 7 (a +30) ウ (75-α) T (a +45)° I (90-a) ① 四角形 AFBCの面積を求めなさい。 (2) 図2は、図1において, 線分CE上にCB // AF となる 点Fをとり,FとA, F とBを結び, F からABに垂線 FGをひいたものである。 ② FGの長さを求めなさい。 ADCの 記号を書 SATB = 2 290 SHEN old ofor A 図2 かげ A D it old G=EXEXY 3√5 x 10 x 1/² = 9 21α= 4² 22. ỏ DOG SVE 3154²9. E 6am 9+3 9+36-² x2=45 2=3√5 [GVS B. 755 245 215 5 (3) 図3は、図1において, 線分 AE 上に CA//DF となる 点Fをとり、点と点を結んだものである。 ① △ACD △DAF は, 次のように証明することがで に証明の続きを書き, 証明を完成させ きる。 なさい。 [証明] △ACDと△DAF で, CA//DF で, 平行線の錯角は等しいから, <CAD=∠ADF ...... ① ② 線分ADの長さを求めなさい。 ③ △DFEの面積を求めなさい。 図3 191 F ADO 9+36=x2 X²=/ 45 B

回答募集中 回答数: 0