学年

教科

質問の種類

数学 中学生

解説見てもわからないです教えてください

ジ倍 第6章 総合実力テスト 4 図1のような, 縦5cm,横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま,図2 のように,m枚を下方向につないで長方形Bをつくる。次に,そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】は,次の (ア)(イ) のいずれかとする。 はば 【つなぎ方】 (ア) 幅1cm重ねてのり付けする。 (イ) すき間なく重ならないように透明なテープを貼る。 とうめい 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm 右 -31cm 8cm 5cm m枚 mtx 9cm 1cm 1年の復習 第1章 第2章 第3章 第4章 1cm テープで貼る (図1) (図2) -n列- (図3) のり付けして重なった部分 (図4) 5 例えば,図4のように, Aを2枚, (ア)で1回つないでBをつくり,そのBを4列, (ア)で1回, (イ)で2回つないで長方形Cをつくる。 このCはm=2, n=4 であり, たての長さが9cm, 横の長さが31cm となり, のり付けして重なった部分の面積は39cm²となる。 [栃木] (1) 【つなぎ方】 は, すべて (イ) とし,m=2,n=5のCをつくった。 このとき,Cの面積を求め なさい。(10点) (2) 【つなぎ方】は,すべて(ア)とし,m=3,n=4のCをつくった。このとき,のり付けして重 なった部分の面積を求めなさい。 (10点)

解決済み 回答数: 1
数学 中学生

この1から4の解けている問題が合っているのか見て欲しいです、、、 あと、4の「りくさんの考え」の説明をしてくださると嬉しいです。(5,6も検討がついていないので、教えてくださると助かります!!)

(Q 連続する整数に 連続する3つの整数の和には、どんな性質があるかを調べて ある整数をnとすると, 連続する整数は次のように表すことが できます。 みましょう。 -1 -1 +1 +1 +1 nを基準にして 考えればいいね。 連続する3つの整数の和を、 1 + 2+ 3 = n-2 n-1 n n+1 n+2 1 右のようにいろいろな整数で 調べて、どんな性質があるかを 予想してみましょう。 9+10+11= 24+25 +26= 自分の 考えをも 2 1で予想した性質が成り立つことを示すには, どうすれば よいでしょうか。 4 連続する3つの整数の和は、3の倍数になります。 この理由を はるかさんとりくさんの考え方でそれぞれ説明してみましょう。 また,それぞれどんなよさがあるかを話し合ってみましょう。 10 連続する3つの整数を, 文字を使って表すことを考えてみましょう。 3 はるかさんとりくさんは, 連続する3つの整数の表し方について 次のように考えました。 下の ] をうめてみましょう。 友だちの 考えを知ろう +1 +1 +1 +1 + 1 + 1 +1 +1 +1 1 2 3 4 4 5 6 7 8 9 10 ...... はるかさん りくさん 21章 式の計算 最も小さい整数を +1 +1 nとすると... 4 5 6. ↑ 真ん中の整数を -1 +1 n とすると... 4 15 6 n 5 10 4で説明したことを読み直すと, 「連続する3つの整数の和は, 3の倍数になる」ことのほかに,次のこともいえます。 下のにあてはまる言葉をうめましょう。 「連続する3つの整数の和は「 の3倍になる」 見方を変えると,ほかの 性質を見つけることが できるね。 18.0 6 10 連続する5つの整数の和に ついて,どんな性質がある でしょうか。 1 + 2 + 3 + 4 + 5 = 7 + 8+ 9 +10 +11= その性質が正しいことを 文字を使って説明してみましょう。 18 +19 +20 + 21 +22= みんなで 話し合おう 深めよう 数学的な考え方 ほかにいえることは ないか考える 真ん中の整数に着目 する。 2節式

解決済み 回答数: 1
数学 中学生

この写真の問題なんですけど数学の宿題で丸つけしてきてくださいって言われて、でも教科書には答え載ってないので、誰か回答を教えてくれると嬉しいです! (15ページの問1、問2、問3です🙇‍♀️)

見つ [1 式の計算 問1 甲文 1 文字式のしくみ QUESTION 次のア~カの式は,右の正四角柱のある数量を表して x cm Q います。これらの式は,どんな数量を表していますか。 とくちょう また、式の特徴で分類してみましょう。 xcm 例 y cm 4x x02 ウ 2x+2y エ xy オ 2x2+4xy ①xy 2種類の文字をふくむ式があるね。 1年で学んだ文字式とは,どんなところが 見方・考え方 文字式のどこに 着目すればいい かな。 ちがうのかな。 目標 文字式を分類・整理しよう。 単項式と多項式 の4xやxyのように, 数や文字をかけ合 たんこうしき 4x, xy わせた形の式を 単項式という。や6のよう 単項式 y, -6 に1つの文字や1つの数も単項式と考える。 10x+20 多項式 また, 10x +20 や 2x+2y のように, 単項式 2x+2y の和の形で表された式を多項式といい,それぞれ たこうしき の単項式を、その多項式の項という。 例1 多項式 x-4.x + 3 は, x2 + (-4x) +3 と表せる から,x, -4.x,3がこの式の項である。 2-4.x +3 多項式で,数だけの項を定数項という。 =x2+(-4x)+ +3 ていう 定数項

解決済み 回答数: 1