学年

教科

質問の種類

数学 中学生

解答をください!お願いします🙇‍♀️⤵️

9 動物保護のボランティアをしている悠平さん (Yuhei) がグラフを見せながらペットを飼うことについて話し ています。 英文を読み、以下の質問に答えなさい。 [思考・判断・表現] Hello everyone. I'm Yuhei. I'm going to talk about having pets today. Do you like animals? Do you have any pets? I *take care of six cats, four dogs and three rabbits. The cats lived near my house, the dogs lived in Iwate before, and the rabbits lived in Yamagata before. Their *Owners can't *take care of them now. When some *owners start to have pets, they don't think about future. They enjoy living with pets at first. But owners may get sick. Look at the graph. Some owners *gave up his pets. (1)(_____) percent of them gave up their pet because they got sick *themselves. I think they and their pets felt very sad. Many cats and dogs can live for more than ten years. It is necessary for owners to take care of their pets every day. If you take care of your pets every day, they will make you very happy. Please remember (2) that. I work for animals as a volunteer. Can you help me? I want you to show this graph to people, and join volunteer activities for animals. Can you tell your families about me? Thank you for listening. (注) *take care of ~の世話をする *owner: 飼い主 * give up : ~ を手放す * themselves: 彼ら自身 ペットを飼えなくなった理由 その他 引っ越18% 12% 時間的理由 14% 経済的理由 20% 飼い主の絶 気 46%

回答募集中 回答数: 0
数学 中学生

このページの、1の(2)、3の(1)、5、6の(2)(3)(ステップという所も)の解説をお願いします。 多くてすみません💦一問でもいいので教えて下さい🙏

動画解説 基礎を使いこなす問題 B2 実戦問題でレベルアップ! 4 1次関数 1次関数の値の変化 A39 次の問いに答えなさい。 (8,5 × 2) 次のアからエまでのなかから,yがxの1次 関数であるものをすべて選び,記号を書きなさい。 3 < 10点〉 (R3 愛知A) (10) 1次関数y=x+1について, xの増加量が5 のときのyの増加量を求めよ。 (三重) ア ] 1辺の長さがxcm である立方体の体積ycm イ面積が50cm²である長方形の縦の長さxcm と横の長さycm 6 ?) ウ半径がxcm である円の周の長さycm 関数y=①で,xの値が1から3まで増加する ときの変化の割合を求めよ。 I 5%の食塩水xgにふくまれる食塩の量 yg (R3 秋田) [ ( ] WUS CHER 1次関数のグラフ A 5 1次関数y=1/1/2x+αのグラフは,点(4,3) 次の問いに答えなさい。 <8点x2> 右の図は, 1次関数 を通る。 このグラフとり軸との交点の座標を求めな さい。 y=ax+by < 10点〉 (R3 徳島) y=ax+b(a,b は定数)の [ ] グラフである。 このとき のa,bの正負について表 -X した式の組み合わせとし 6 1次関数のグラフと図形の面積 て正しいものを,次のア, 図のように, 4点 イ、ウ、エのうちから1つ選んで記号で答えよ。 A(3, 3), B(-3, 3), B (栃木) ア a>0,b>0 イ a>0,b <0 ウ a <0,b>0 I a<0, b<0 C (-3,-3), D (3,-3)を 頂点とする正方形 ABCD がある。 また, 辺AB, 辺 CD とそれぞれ交点E, F をもつ直線y=2x+bがあ る。 〈 8点×4> (佐賀) [ ] C/F D ) 関数y=2x+1について, xの変域が1≦x≦4 のとき、yの変域を求めよ。 (北海道)(1) 直線y=2x+bが点(1,3)を通るとき,bの値 [ ] を求めよ。 3 1次関数の式の求め方 A 41 次の問いに答えなさい。 (8,5 × 2) ] +bのdll) 関数y=3xのグラフに平行で,点(0, 2)を通 Da _ (2) b=2のとき, 四角形AEFDの面積を求めよ。 +6の直線の式を求めよ。 ヒント ヒント (R3 北海道改) 2組の 連立方 ( ] [ ] 下の表は,関数y=ax+3について,xとyの 対応を表したものである。 このとき, a, b の値 を求めよ。 得点 UPS (3) 四角形 AEFDの面積が12のとき, bの値を求 めよ。 (福井) ステップ 辺EAと辺 FDの長さの和は [ ] IC -2 -10 1 2 ... y 117 [6] b -1 -5 [a b [ ント 3 (1) 平行な直線の傾きは等しい。 の増加量) (変化の割合) 化の割合は、 a(グラフの 意変化の割合 こは切片(り)は 片(0,-1)を えるとyが ブラフ上にある 式が成り立っ 式にxとyの とができる」 ラフは右上が が最小の ラフは右下が が最小の 域は,かな ずグラフで えよう。 入試必出パターンをくり返し練習! 関数の式を 合は,エ いくつ変化 る。 が0のと - ... 6 (2) まず, 点E, 点F の座標を求める。 ] yy=2x+b E A O -X 2年 77 ] 基礎 <2> 3 2 X x2〉 x2

回答募集中 回答数: 0