学年

教科

質問の種類

数学 中学生

それぞれの大問の➀の解説がほしいです。 ほかの問題もわからないですけど、➀で基礎をおさえたいです💪

Point 4 直線上の点の座標 例題図のように、2つの直線 がある。上に点A,上に点B,C, 上に点を四角形ABCD が正方形となるようにとるとき、点 Aの座標を求めなさい。 11-2r LE 人 解き方 点の座標を文字でおき, B~Dの座標を文字で表すことによ 1辺の長さについての関係式から求める。 A D (i) 点の座標をとすると,Aは直線2r上の点であるから、 座標は2rにαを代入して20. よって、 AB=24 B C m: y=-x+15 点Dの座標はAの座標と等しいので24座標は点Dが直線y=-x+15 上の点であ ることから、y=-x+15にμ=20 を代入して、2ax+15より,z=15-2 (iii) ()より、AD=15-2a-a=15-34, 四角形ABCD が正方形であることから, AB=AD であるから, 2015-34より, a=3. よって, A の座標は3. 座標は2×3=6 問題 4 次の問いに答えなさい。 □(1) 次の図で点Aの座標をαとするとき 座標をαで表しなさい。 ① A (a) ② Y 4 I I [5 6 0 ③ !! A 4)( (2)次の図 点A, B の座標がともにαであるとき 線分ABの長さをαで表しなさい。 ① y 0 B y=x+3 y=-x+3 ② ③ y=x JA y= x+4 IB 10 y 答 (36) 57 A ((24) IB I -20 ■(3) 次の図で、 四角形ABCD が正方形であるとき, 点Aの座標を求めなさい。 ① y y=2x+1 A D ② y □③ !! IC x+3 (3, 6) S A D JA DAR I OB 0 B C C B C 5 y=-x+4 y=x+1 11 直線の式 87

解決済み 回答数: 1
数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0