学年

教科

質問の種類

数学 中学生

明日提出のレポートなんですけど、どうやってまとめればいいのか分からなくて、誰か助けて欲しいです

2 実際の場面で、変化の 問7 あるジェットコースターでは、斜面を下り始めてから 秒間に進む距離をym とするとき, y=2 の関係が 成り立つとします。 問 8 このジェットコースターで、関数 y=2c2 の 変化の割合は、何を表しているでしょうか。 たとえば、この値が 1から3まで増加する ときの変化の割合は・・・ 平均の速さは, そうたさん ( 進んだ距離) ( 進んだ時間) 斜面を下り始めてから1秒後, 3秒後までに進んだ距離は x=1のときy=2×12=2 (m) x=3のときy=2×3°= 18 (m) したがって、1秒後から3秒後までの間の平均の速さは の式で求められる。 18-2 16 ゆうなさん ( 進んだ距離) ( 進んだ時間) ①の式で進んだ時間をxの増加量,進んだ距離を yの増加量と考えると, 関数 y = 2xc2 の変化の割合は このジェットコースターの平均の速さを表している。 - = 3-1 2 = 8 (m/s) ... 1 上のQで,次の平均の速さを求めなさい。 [] (1) 斜面を下り始めて1秒後から5秒後までの間 (2) 斜面を下り始めてから4秒後までの間 このジェットコースターが斜面を下りるとき, だんだん速くなることを,下り始めてから 1秒間ごとの平均の速さを求めて示しなさい。 xyの増加量は、 ジェットコースターで 何を表しているかな。 y y 18| 2 3-1 18-2 ①のように、 秒速8mを 8m/s と書くこともある。 s は second (秒) を略した ものである。 x 0 1 2 3 4 5 0 28 18 32 50 LECTETT 体積をycm y 20 このとき yはxの2 (1) y (2) x=- 右の図の 関数のグミ (1)~(3) は グラフで 5 6 y 次の(1) 増加す (1) y 関数 ときの (1) 1 x> 増加

回答募集中 回答数: 0
数学 中学生

どうやってまとめればいいか分からないので、誰か助けて欲しいです

2 実際の場面で、変化の 問7 あるジェットコースターでは、斜面を下り始めてから 秒間に進む距離をym とするとき, y=2 の関係が 成り立つとします。 問 8 このジェットコースターで、関数 y=2c2 の 変化の割合は、何を表しているでしょうか。 たとえば、この値が 1から3まで増加する ときの変化の割合は・・・ 平均の速さは, そうたさん ( 進んだ距離) ( 進んだ時間) 斜面を下り始めてから1秒後, 3秒後までに進んだ距離は x=1のときy=2×12=2 (m) x=3のときy=2×3°= 18 (m) したがって、1秒後から3秒後までの間の平均の速さは の式で求められる。 18-2 16 ゆうなさん ( 進んだ距離) ( 進んだ時間) ①の式で進んだ時間をxの増加量,進んだ距離を yの増加量と考えると, 関数 y = 2xc2 の変化の割合は このジェットコースターの平均の速さを表している。 - = 3-1 2 = 8 (m/s) ... 1 上のQで,次の平均の速さを求めなさい。 [] (1) 斜面を下り始めて1秒後から5秒後までの間 (2) 斜面を下り始めてから4秒後までの間 このジェットコースターが斜面を下りるとき, だんだん速くなることを,下り始めてから 1秒間ごとの平均の速さを求めて示しなさい。 xyの増加量は、 ジェットコースターで 何を表しているかな。 y y 18| 2 3-1 18-2 ①のように、 秒速8mを 8m/s と書くこともある。 s は second (秒) を略した ものである。 x 0 1 2 3 4 5 0 28 18 32 50 LECTETT 体積をycm y 20 このとき yはxの2 (1) y (2) x=- 右の図の 関数のグミ (1)~(3) は グラフで 5 6 y 次の(1) 増加す (1) y 関数 ときの (1) 1 x> 増加

回答募集中 回答数: 0
数学 中学生

このページの、1の(2)、3の(1)、5、6の(2)(3)(ステップという所も)の解説をお願いします。 多くてすみません💦一問でもいいので教えて下さい🙏

動画解説 基礎を使いこなす問題 B2 実戦問題でレベルアップ! 4 1次関数 1次関数の値の変化 A39 次の問いに答えなさい。 (8,5 × 2) 次のアからエまでのなかから,yがxの1次 関数であるものをすべて選び,記号を書きなさい。 3 < 10点〉 (R3 愛知A) (10) 1次関数y=x+1について, xの増加量が5 のときのyの増加量を求めよ。 (三重) ア ] 1辺の長さがxcm である立方体の体積ycm イ面積が50cm²である長方形の縦の長さxcm と横の長さycm 6 ?) ウ半径がxcm である円の周の長さycm 関数y=①で,xの値が1から3まで増加する ときの変化の割合を求めよ。 I 5%の食塩水xgにふくまれる食塩の量 yg (R3 秋田) [ ( ] WUS CHER 1次関数のグラフ A 5 1次関数y=1/1/2x+αのグラフは,点(4,3) 次の問いに答えなさい。 <8点x2> 右の図は, 1次関数 を通る。 このグラフとり軸との交点の座標を求めな さい。 y=ax+by < 10点〉 (R3 徳島) y=ax+b(a,b は定数)の [ ] グラフである。 このとき のa,bの正負について表 -X した式の組み合わせとし 6 1次関数のグラフと図形の面積 て正しいものを,次のア, 図のように, 4点 イ、ウ、エのうちから1つ選んで記号で答えよ。 A(3, 3), B(-3, 3), B (栃木) ア a>0,b>0 イ a>0,b <0 ウ a <0,b>0 I a<0, b<0 C (-3,-3), D (3,-3)を 頂点とする正方形 ABCD がある。 また, 辺AB, 辺 CD とそれぞれ交点E, F をもつ直線y=2x+bがあ る。 〈 8点×4> (佐賀) [ ] C/F D ) 関数y=2x+1について, xの変域が1≦x≦4 のとき、yの変域を求めよ。 (北海道)(1) 直線y=2x+bが点(1,3)を通るとき,bの値 [ ] を求めよ。 3 1次関数の式の求め方 A 41 次の問いに答えなさい。 (8,5 × 2) ] +bのdll) 関数y=3xのグラフに平行で,点(0, 2)を通 Da _ (2) b=2のとき, 四角形AEFDの面積を求めよ。 +6の直線の式を求めよ。 ヒント ヒント (R3 北海道改) 2組の 連立方 ( ] [ ] 下の表は,関数y=ax+3について,xとyの 対応を表したものである。 このとき, a, b の値 を求めよ。 得点 UPS (3) 四角形 AEFDの面積が12のとき, bの値を求 めよ。 (福井) ステップ 辺EAと辺 FDの長さの和は [ ] IC -2 -10 1 2 ... y 117 [6] b -1 -5 [a b [ ント 3 (1) 平行な直線の傾きは等しい。 の増加量) (変化の割合) 化の割合は、 a(グラフの 意変化の割合 こは切片(り)は 片(0,-1)を えるとyが ブラフ上にある 式が成り立っ 式にxとyの とができる」 ラフは右上が が最小の ラフは右下が が最小の 域は,かな ずグラフで えよう。 入試必出パターンをくり返し練習! 関数の式を 合は,エ いくつ変化 る。 が0のと - ... 6 (2) まず, 点E, 点F の座標を求める。 ] yy=2x+b E A O -X 2年 77 ] 基礎 <2> 3 2 X x2〉 x2

回答募集中 回答数: 0