学年

教科

質問の種類

数学 中学生

至急です!!! 解き方と答えをお願いします🤲

(3) 右の図1のように 長方形ABCDの2本の対角線の交点を とします。 点口を通り, 長方形ABCDの辺ADと平行な直 線と辺AB, 辺DCとの交点をそれぞれP Qとし点を通り 長方形ABCDの辺ABと平行な直線と辺AD, 辺BCとの交点 をそれぞれR, Sとします。 このとき, 長方形ABCDの中に できた8つの三角形はすべて合同な直角三角形になりました。 それらの直角三角形を図1のように、アークとします。 図1 A ア P イ B ク ウ R S O H キ オ ひなさんは,直角三角形アを平行移動 対称移動・回転移動させて,ほかの直角三角形にぴった り重ねることを考えています。 次のひなさんとれんさんの会話を読んで, あとの① ② に答えなさい。 R ● ひな 「右の図2で,直角三角形アを平行移動すると. 重ねることができるのは,イークのどの直角三角 形かな。」 図2 A ク ア れん 「平行移動は、一定の方向に動かす移動だから, 直角三角形 (a) に重ねることができるね。」 P イ ウ ひな 「そうだね。」 B カ キ S H D オ Q 0 れん「では,図2で, (b) 直角三角形アを,対称移動を1回した後,点を中心とした180°の回 転移動を1回して、最後に重ねることができるのは,アークのどの直角三角形だろう。」 ひな 「ちょっと難しそうだけど, 考えてみよう。」 ①会話の中の (a) にあてはまる記号を, イ~クから1つ選び, 答えなさい。 ② 下線部(b)について, 直角三角形アを, 対称移動を1回した後, 点〇を中心とした180°の回転移 動を1回して最後に重ねることができる直角三角形を, アークからすべて選び、記号で答えな さい。

未解決 回答数: 1
数学 中学生

線を引いたところが質問で、矢印を引いたところが答えです!なぜ小さくなるのかわかりません。中1の水溶液の性質の範囲です。

原料 4 力をのばそう! 水溶液の性質 4 80本100gに砂糖をとけるだけとかした。 (1) 水に砂糖がとけた直後ののようすを表す なものは、次のアーエのどれか。 I (2)砂糖の水溶液をしばらく80℃に保ったときの株式 図として適当なものは、(1)のアーエのどれか。 (3)水の温度を下げるととける砂糖の量は減る。こ のときの水溶液の質量パーセント濃度はどうなるか (4)20℃の砂糖の水溶液の濃度は67%であった。この 水溶液200g中にとけている砂糖は何か I 小さくなる。 134g 濃度 溶質の質量=溶液の質量 × 100 2 下の表は、水の温度と100gの水にとける物質の 量との関係を表している。 (0) 88.8g 水の温度(℃) 20 40 60 80 硝酸カリウム(g) 31.6 63.9 109.2 168.8 (2) 104.9g 食塩(g) 35.8 36.3 37.1 38.0 再結晶 (1) 80℃の水100gに80gの硝酸カリウムをとかした。3 あと何gの硝酸カリウムがとけるか。 (2) 80℃の水100gに限度までとかした硝酸カリウム の水溶液を40℃にすると、 何gの固体が出てくるか。 (4) (3)(2)のようにして、水溶液中の固体をとり出すこと を何というか。 出てきた固体と水溶液を分けるときのピーカーを 17.

未解決 回答数: 1
数学 中学生

解説ありですがそれでもわかりません。 解説の解説をお願いします🙇 4問だけです。よろしくお願いします。

37 (1) 最初に同じ目が出る確率は、 6 1 37 626 また,最初は異なる目が出るが,小さい目を出した人が,もう一度さいころを振り、大きい目と同じ目が出ても引 き分けとなる。 その確率は, × 6.5 15 63 6-36 よって、 1回の勝負をして引き分けになる確率は, 1 5 11 6 36-36 (2)最初にB君が 「6」 の目を出した場合, A君が逆転勝ちをすることはできない。 最初にB君が「5」の目を出し, A君が4以下の目を出したとき,次にA君が6の目を出せば逆転勝ちとなる。 1.4 1 4 その確率は, 13x1=216 最初にB君が「4」の目を出し, A君が3以下の目を出したとき、次にA君が5以上の目を出せば逆転勝ちとな る。 その確率は, 6 1.3.x=216 62 最初にB君が「3」の目を出し, A君が2以下の目を出したとき、次にA君が4以上の目を出せば逆転勝ちとな る。 その確率は, 1.23 6 62 x=216 最初にB君が「2」の目を出し, A君が1の目を出したとき,次にA君が3以上の目を出せば逆転勝ちとなる。 A君とB君がそれぞれ1個ずつさいころを持ち、次のようなゲームをする。 [1] 2人同時にさいころを振る。 [2] 同じ目が出たときは引き分けとする。 [3] 異なる目が出たときは, 「大きい目」 を出した人は何もせず,「小さい目」 を出した方がもう一度さいこ を振る。 [4] [3] において振り直して出た目と、 「大きい目」のうち、大きい方を出した人を勝ちとし、両者が同じときに 引き分けとする。 [1]から[4]までで1回の勝負とする。 また,「小さい目」を出した人が勝ったとき、逆転勝ちと呼ぶことにする。次の問いに答えよ。 (1) 1回の勝負をして引き分ける確率を求めよ。 (2) 1回の勝負をしてA君が逆転勝ちする確率を求めよ。 (3) 1回の勝負をしてA君が勝つ確率を求めよ。 1回の勝負で引き分けとなったとき、 2回目以降は次のようなゲームを続ける。 [5] さらに2人同時にさいころを振る。 [6] 同じ目か,または, 異なる目であっても目の差が1以内は引き分けとする。 目の差が2以上になったとき 大きい目を出した人を勝ちとする。 2回目以降は, [5]から[6] までを1回の勝負とする。 (4) 1回の勝負をして引き分けとなり、2回目も引き分け,3回目でA君が勝つ確率を求めよ。 その確率は、 1-1 4 4 626-216 最初にB君が 「1」 の目を出した場合, A君が逆転勝ちをすることはできない。 4 6 よって、1回の勝負をして、A君が逆転勝ちする確率は216216216216216 54 6 4 20 5 (3)(1) より 1回の勝負をして, 引き分ける確率は である。 11 36 11 25 よって、1回の勝負をして, 勝ち負けが決まる確率は,1-3636 25.1 25 A君B君のどちら勝つかは 1/2の確率なので、1回の勝負をしてA君が勝つ確率は、36×2=72 (4) A君の方が大きい目を出し、 目の差が2以上になるのは,次の場合である。 (A,B)=(6,4),(6,3),(6,2), (6,1),(5,3),(5,2),(5,1),(4,2),(4,1),(3,1)の10通り。 よって、2回目以降の勝負のルールの中で, A 君が勝つ確率は, 10 5 62 18 同様に考えて、2回目以降の勝負のルールの中で, B君が勝つ確率は、 5 18 5 84 ゆえに、2回目以降の勝負のルールの中で, 引き分ける確率は, 1-2・ = 18 18-9 したがって, 1回の勝負をして引き分けとなり、 2回目も引き分け, 3回目でA君が勝つ確率は, 11 4 5 36 xx18 55 =1458 (

未解決 回答数: 5