学年

教科

質問の種類

数学 中学生

3(2) 解説のマーカー部分がなぜそうなるかわかりません。 それの前の文や後の文は理解できてます。

5 下の図1において、四角形ABCDはAB=12cm,BC=24cmの長方形である。辺AD上 に点を,辺BC上に点Fを,AE=BF=8cmとなるようにそれぞれとる。2点P,Qは点 Bを同時に出発し、点P は辺AB上を秒速1cmで点Aまで動き,点は辺BC上を秒速2cm で点Cまで動く。2点P,Qが点Bを同時に出発してからx秒後の△BPQの面積をycm2とす る。ただし、xの変域は2点P, Qが動き始めてから停止するまでとし、点Pが点Aに,点Qが 点Cにあるときのyの値は△ABCの面積とする。 12 cm 8 cm E x+12x-48=141 x2+12x-189=0 38 3 B F 24cm 図1 2 IC 1 42 このとき、次の1,2,3の問いに答えなさい。 y x = 900 -12V144+75 2 6 x=±3015 & XC=-6±15 2 9 3 1 x=3 のときのyの値を求めなさい。 3 1049 +3 8×3× 1/1/ (2 2yをxの式で表しなさい。 x(2x) = 2x² +5 2)19: 2)96 248 12(2x-8) 16 2124 3点Qが分FC上を動いているとき, 次の(1),(2)の問いに答えなさい。 XX ABPQの面積と△EFQの面積の和が141cmになるときのxとyの値をそれぞれ求めな さい。ただし、途中の計算も書くこと。 9 1247 122112 =242-46 12x-48 60 30 216 16 31 12 1891 (下の図2のように, 線分PQと線分EFとの交点をRとするとき, 四角形AERPの面積 AFQRの面積が等しくなるのは, 2点P, Qが点Bを出発してから何秒後か。 (12-x) 8cm E A 12 cm, P R Q → B F 24cm 図2 D 248 141 48 224 8 189 P 6 2)12 216 633)189 L

解決済み 回答数: 1
数学 中学生

答えを見ても考え方がわからないので、もう少し詳しく解説お願いします🙇

さい。 Lv15 √5 √3+(V3)-2/2× 活用しよう! 紙にかくされたきまりー この章で学んだ考え方を活用して、 身近な題材の問題を解いてみよう。 めいしょ わたしたちの生活の中には、 新聞, 雑誌, 名刺, 折り紙など、さまざまなところで紙が使用 されている。 紙の大きさや形にはいろいろなものがあるが, A判, B判という紙の規格にそっ たものが多い。 A判の紙について調べたら、次のことがわかった。 A0判は, 短い方の辺と長い方の辺の長さの比が1:√2 で. 面積が1mの長方形である。 AO A.2 ■(1-√3) A1判は, A0判の長い方の辺の長さが半分になるように, A0判を1回折ってできた長方形である。 A1 A4 (大阪) (12-(√√3) 同じように, A2判はA1判の, A3判はA2判の, ・・・・・・. 長い 方の辺の長さが半分になるように折ってできた長方形である。 A3 √2-3 +35の値を (京都) V A3判のコピー用紙の短い方の辺の長さをcm として、 次の問いに答えなさい。 1 右の図のように, A3判のコピー用紙と, A4判のノート, A5判の手帳がある。 次の長さ をαを使った式で表しなさい。 A4判コ A3判 A5判 コート acm コピー用紙 ① A3判のコピー用紙の長い方の辺の長さ Fax√2=√2a (cm) 0-1 /2acm ② A4判のノートの短い方の辺の長さ Ev2a÷2=¥ √2a (cm) √2 2 acm acm 2章 平方根 √√2 20cm 「コピー用紙の上に 重ねると左の図の ようになるね。 acm √2 acm ③ A5判の手帳の長い方の辺の長さ A4判の短い方の辺の長さに等しいです。 数分解すると、計算) √2 2 acm 簡単になるね。 2 A3判の紙の面積は,何cmですか。

解決済み 回答数: 1
1/57