学年

教科

質問の種類

国語 中学生

現代文の問題が分かりません!!! 教えてください!!!

グラフ1 高校生の平日1日あたりのインターネット 利用時間の平均値の推移 220 213.8 210 207.3 192.4 190-185.1 平成26 平成27 平成25 平成29 平成29年度青少年のインターネット利用環境実態調査 |調査結果一内閣府」 グラフ2 平成29年度の高校生の平日1日あたりの インターネット利用時間の分布 5時間以上 26. 24時間以上5時間未満 10.3 3時間以上4時間未満 | 17.4 | 2時間以上3時間未満 20.4 2時間未満 使っていない 10.2 わからない 2.0 23.7 0.0 5.0 10.0 15.0 20.0 25.0 30.0 「平成29年度青少年のインターネット利用環境調査 調査結果 内閣府 |グラフ3 私たちのクラスの生徒の平日1日あたりの 5時間以上 インターネット利用時間の分布 4時間以上5時間未満 25.0 3時間以上4時間未満 20.0 2時間以上3時間未満 115.0 2時間未満 12.5 使っていない 0.0 わからない 0.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 学習委員によるアンケート調査をもとに作成」 たなか 次の【文章】は、生活委員の田中さんが書い (1) □Aに入る言葉を簡潔に書け。 (1点)ワン 報告文の一部で、グラフ1~3は、そのた めに用いた資料です。 これらを踏まえて問い に答えなさい。 資 タ 2 【文章】 ■ X・Yに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 す = (20点) 2 Y=もし ア X=しかし イ X=ところで ウ X=もし Y=しかし Y=たとえば エX=たとえば Y=ところで 2 グラフは、平成26年度から20年度にかけての「高校 生の平日1日あたりのインターネット利用時間の平均値 の推移」を表しています。 利用時間が、年々 A ことが分かります。 現代は情報社会が進展していく過 程にあるので、これは当然だと言えるでしょう。 1日あたりの平均利用時間が30分を超える のは長すぎるのではないでしょうか。 グラフ2は、「平成29年度の高校生の平日1日あた りのインターネット利用時間の分布を示しています。 「5時間以上」が26・1%、「4時間以上5時間未満」 が10.3%となっています。 両者を合わせると38・4% になります。つまり、 Bが、1日に4時間以 上インターネットを利用しているのです。 04 グラフ3は、「私たちのクラスの生徒の平日1日あ たりのインターネット利用時間の分布」を示したもの です。これを見ると、 Cの人が、1日に4時間 以上インターネットを利用していることが分かります。 すいみん 私は、平日に4時間以上もインターネットを利用す るというのは長すぎると考えます。 以下に、その理由 を述べます。私たちの平日の生活を振り返ってみま しょう。人によって多少の違いはあるでしょうが、通 学に要する時間も含めると、登校から帰宅まで10時間 程度はかかります。 睡眠時間を7時間、食事や入浴、 その他の細々したことに使う時間を2時間とすると、 残りは5時間しかありません。4時間以上イン ターネットに使ってしまったら、学習のための時間を 十分にとることは、かなり難しくなるでしょう。 内閣府の調査によると、高校生のインターネットの 利用内容は、コミュニケーション、動画視聴、音楽視 聴が主だということです。 現在、1日の利用時間が4 時間を超えている人は、これらのうち、自分にどうし ても必要なものを残して、他はある程度制限したほう がいいのではないでしょうか。自分なりのルールを作 り、節度のある利用を心がけたいものです。 ■BCに入る言葉の組み合わせとして最も 適当なものを次の中から選び、記号で答えよ。 (20点) C=過半数 ア B=2人に1人以上 イ B=2人に1人近く ウ B=3人に1人近く エ B=3人に1人以上 C=4人に1人程度 C=ほとんど C=半数以上 線部「学習のための時間を十分にとることは、 かなり難しくなるでしょう。」を、次の条件に従ってよ り強い主張をこめた表現に書き改めよ。 条件1 「いったい」という言葉を使い、 「......か。」 の形で書く。 条件2 二十字以上、三十字以内で書く。 (2点) ⑤ 【文章】により説得力を持たせるためには、どん なことを示す資料を付け加えたらよいか。 最も適当 なものを次の中から選び、記号で答えよ。 (20点) ア 保護者のインターネット利用内容 イ中学生のインターネット利用時間 ウ 高校生のインターネット利用内容 高校生と中学生のテレビの視聴時間

回答募集中 回答数: 0
数学 中学生

全てわからない

(2) 第2学 14. ABCD に次の条件を加えると,それぞれどんな四角形になるか答えなさい。 D 【思考・判断・表現】(3点×3点)A (1)AC=BD (2) AC=BD, AC⊥BD (3) AC⊥BD G ひし形 B 15. 右の図1で, △ABCの辺 AB 上に点Pをとり、点Pと頂点Cを 結ぶ。∠APC の二等分線をひき,辺 ACとの交点をQとすると, PQ // BC となった。 【思考・判断・表現】 (2点×2) (1) BPC の大きさをx, ∠AQPの大きさをとするとき, PCQの大きさをxとy を用いて表しなさい。 (2)図2は図1に点Qを通り,辺 AB に平行な直線をひき,辺BC との交点を R, 線分PCとの交点をSとし, 頂点と点 S, 点Pと 点R を結んだものである。 ▲BRSと面積の等しい三角形をすべて 答えなさい。 図1 B 図2 P 92 8(2) 12 =y-(90- is gov <PcQ=y-a △PBCより xctata=180 29 =180-2 a = 1800 た,それ =2C 2 △PRS ASCQ P BR 1a=5 10-5=5 6=5 16.大小2つのサイコロを同時に投げるとき,大きいサイコロの出た目の数を小さいサイコロの出 10-5=5 た目の数を とする。 このとき,次の確率を求めなさい。 2-6=5 4-6=5 a=2 a=1 ただし,どの目が出ることも同様に確からしいとする。 【思考・判断・表現】(3点×2) X (1) 2a-b=5 となる確率 36=12 a=4 b (2) 2直線 y=xとy=2x-1が交わる確率 8-6=5 a (1 b=3 TE 8-3=5 a=36-6=5 b=1 17. 次のア~エの中から正しいものだけを選び, 記号で答えなさい。 【思考・判断・表現】(4点) 6-1=5 ア3人でじゃんけんをするとき,1人だけが勝つ場合とあいこになる場合では,起こりやすさは同じである サイコロを60回投げると,1の目は必ず10回出る 2枚のコインを同時に投げたとき,起こりうる場合は「2枚とも表」, 「2枚とも裏」,「1枚は表で1枚は裏」 の全部で3通りとなり,どのことがらが起こることも同様に確からしい ぐあ エ赤球2個と白球3個と青球1個の6個が入っている箱の中から、同時に2個の球を取り出すとき, 2個とも白球になる確率が最も大きい ちょ は1人

回答募集中 回答数: 0
数学 中学生

この問題全部教えてください

10. 右の図のように,∠C=90°の直角三角形ABC で, ∠Bの二等分線と 辺ACとの交点をDとする。 点D から辺 AB へ垂線をひき、辺ABとの 交点をEとすると, BE=BC となる。 次の問に答えなさい。 NCB (対応順) E 【思考・判断・表現】(3点×2) (1)このことを証明するとき、どの三角形とどの三角形の合同をいえば よいですか。 B 'C 2つの角 (2) (1) を証明するときに使う三角形の合同条件を答えなさい。 11. 右の図のように,二等辺三角形ABC の長さの等しい辺 AB, ACの 中点をそれぞれM,Nとし, BN と CMとの交点をDとすると, △DBCは 二等辺三角形になる。このことを以下のように証明した。 」にあてはまるものを答えなさい。 【思考・判断・表現】 (2点×6) (証明) MBC と ANCB において, B 仮定から, AB=AC よって, MB=- 1/2AB NC=12121 MB= BC は共通 ア イ AB=AC で, 二等辺三角形の底角は等しいから, MBC=ウ ① ② ③ より [ I ]がそれぞれ等しいから, AMBC=ANCB したがって, <MCB= ∠ オ カ が等しいから, ADBCは二等辺三角形である。 12. 右の図の□ABCD で, BAD=78°,∠BEF=151°のとき, DFE の大きさを求めなさい。 【思考・判断・表現】 (3点) 13. ABCD の AB, DCの中点をそれぞれ M, Nとすれば, 四角形 MBND は平行四辺形になる。このことを証明しなさい。 【思考・判断・表現】 (6点) M D N A 月終) て 1180 97 83 180 QSC 1 2 178 180 151 151 29 C BE M N B

回答募集中 回答数: 0
公民 中学生

プリントから 国際協調を実するために、 どのような組織があるのか 教えてください。

課題① 国際連合についてまとめよう。 国際連合 1945年4月に、(①国際連合憲章)を採択し、10月に51か国を原加盟国とする国際 連合を設立した。本部は、(② ニューヨーク 加盟している。 国連の目的 1. 世界の(③ 平和と安全 )の維持 )におかれ、現在は、およそ190の国が 2.国家間の(④友好関係)の発展 3.まずしい人々の(⑤生活条件の向上 )とすべての人の (⑥人権の保障) 4.これらの目的を果たすための(⑦ 国際協力)を促進 《 国際連合の主要機関 》 機関 総会 安全保障理事会 活動 ●国が1票をもち、 (⑧軍縮開発と環境、人権、平和維持)など の広い問題が審議される。 ●2015年には、(⑨ 持続可能な開発目標(SDGs) その実現にも力を入れている。 ●世界の(③ 平和と安全 )の維持に責任を負う。 国際紛争を調査し、 解決方法を勧告する。 )を採択し、 ●国際的な安全をおびやかすような国に対して、 (⑩経済制裁や軍事行動 などの強制措置をとるように、加盟国に求めることができる。 ●(4平和維持活動 (Pko) の派遣を決定する。 (12 アメリカ・イギリス・フランス・ロシア・中国 の5つ の国が常任理事国で、 ( 13 拒否 権)をもっている。 国際司法 裁判所 加盟国から依頼された、 条約の解釈や国際法上の問題に関する紛争について の裁判を行う。

回答募集中 回答数: 0
数学 中学生

全部教えてください! 書いてるところは合ってるかも知りたいです

5章 相似な図形 5章の確認 1 相似条件と相似比 右の図で、 ∠BAC = ∠BCD である。 次の問 いに答えよ。 □(1) 相似な三角形を記号を使って表せ。 また, そのときに使った 相似条件を書け。 △ABCDLCBD □ (2) の値を求めよ。 24.2=3x 2x=3 B 3 5章 相似な図形 5章の応用 1 右の図のような鈍角三角形ABCがある。 点Pは点Aを出発 して毎秒0.5cmの速さで辺AB上を点Bまで進む。このとき 2つの三角形ABCと△PBDが相似になることが2回ある。 それは何秒後と何秒後か。 12 cm -P -2.. 32:2 ★ 2 右の図のように, △ABCの辺BCの中点をDとし,辺AB上 に点Eをとり,辺CAの延長と線分DEの延長との交点をFと する。 AC=12cm, DE: EF=2:1のとき, 線分FAの長さ を求めよ。 2 三角形と比・平行線と比次の図で, xの値をそれぞれ求めよ。 □ (1) DE // AC □ (2) a//b//c □ (3) AD//EF//BC A--8-D EF B x=6 中点連結定理の利用 右の図の△ABCで,点D,E,F,Gは それぞれ線分AB, BC, CD, DAの中点である。 12 21 B A+ 29 C 27. d ★ 3 右の図のように, ∠ABC=90° の直角三角形がある。 辺AC上に点Dをとり, 点Bを通り線分BDに垂直な直線上 に∠EDB= ∠CAB となる点Eをとる。 また, 線分EDと辺 ABの交点をFとする。 次の問いに答えよ。 D このとき 四角形DEFGは平行四辺形であることを証明せよ。 B E 4面積比体積比 右の図で, ∠C=90°, AD: DB=3:1である。 点Dから辺ACにひいた垂線をDEとする。 このとき,次の問い 3 □ (1) ADEと四角形 DBCEの面積比を求めよ。 E 9:1 B ★□ (2) △ADE, 四角形 DBCE を辺ACを軸として1回転してできる立体をそれぞれPQとす るとき PとQの体積比を求めよ。 ★ 5 線分の比 右の図の ABCDにおいて, DE: EC=2:1, □F, Gはそれぞれ対角線 AC, 線分AEと対角線BDとの交点 である。 このとき, DG: GF を求めよ。 B' 150 (1) ADBCAFBE であることを証明せよ。 B JC 3cm D 5cm B □(2) AB=6cm, CA = 10cm, ∠DBC = ∠DCB のとき, 線分AFの長さを求めよ。 D 本 4 右の図で、四角形ABCDはAD // BCの台形, Eは辺CDを F D 12に分ける点, Fは辺AD上にあって, BC=FD となる点, Gは線分BDとEFの交点である。 △EDGと四角形ABGF の面積比が27のとき, AF FD を求めよ。 5 右の図で △ABCは, AB=AC=12cm, ∠A=90°の直角 「二等辺三角形, 三角柱ABC-DEFは△ABCを底面とし,高さ が12cmである。 AP=AQ=4cm となるように, 辺AB, AC 上にそれぞれ点P,Qをとり, DR=3cm となるように,辺 AD上に点Rをとる。 点Rを通り, 底面に平行な平面と線分 PE, QF との交点をそれぞれ, S, Tとする。 6つの点A, P, Q,R, S, Tを頂点とする立体の体積を求めよ。 E B 0 G IE 151

回答募集中 回答数: 0
1/84