学年

教科

質問の種類

数学 中学生

この大門6の問題の1.2.3.4と問題があるんですが 公式を使っても答えがわからないのですがこの問題の解き方を教えてください。できたら答えを教えてください

ty 9つのマスに入る数が1以上の整数であるとき, 図3の魔方陣を考える。 左の縦列と真ん中の横列を見ると、共 通のマスが1つあるため, 共通のマス以外の2つのマスの数の和がどちらも同じであることがわかる。このこどか ら、Bに入る数は ( ① ) であることがわかる。 この考え方を利用すると, 1列の3つの数の和は (⑤) である ことがわかる。 12 fr D 10 7 6 11 1 5 C 1~16までの整数が一つずつ入る図4のような4×4の魔方陣を考える。 右端の縦列と下から二番目の横列を見ると、 共通のマスが1つあるため, 空欄の2つの マスの差がわかる。 マスに入る数は、 1~16であることから、 C に入る数は (⑥) であることがわかる。 また,同様に考えると,Dに入る数は (⑦) であることがわ かる。 図4 [6] 図1のような容器 A, 容器 B, 容器C がある。 容器 A は半径4cm, 高さ8cmの円すい形, 容器B は半径4cm, 高さ8cmの円柱形, 容器 C は半径4cmの半球形をしている。 以下の問いに答えなさい。 容器A 容器B 容器C 4cm 8 cm/ 4cm 18cm <図1> 4cm (1) 図2のような半径12cm, 高さ24cmの円すい形をした容器Xがある。これに, 容器Aで水を注いで容器X を満たすには,何杯入れるとよいですか。 (2) 図3のように、 容器Xの底面に平行な平面で切った円すい台の形をした容器Y を作りました。 これに, 容器A で水を1杯注いだのちに, 容器B で水を6杯注ぐ と、容器Yの水の高さは何cmになりますか。 (3) (2) のあとに,容器Bと容器 C で, 容器Y を水で満たす。 容器 B をできるだ け多く用いるとき,それぞれ何杯ずつ注ぎますか。 (4) 図4のように, 容器Yに半径2cm, 高さ8cmの鉄の円柱を4本入れる。 これに, 容器Bと容器C を用いて, 高さ8cmまで水を注ぐとき, 容器B と容器Cを注 ぐ回数の差が最も少ない入れ方は,それぞれ何杯ずつですか。 容器X 容器 Y 124cm I I 12cm_. <図2> 4cm 1 <図3> 2cm 18cm <図4>

回答募集中 回答数: 0
数学 中学生

2023 市川高等学校 数学 (3)の詳しい解説をお願いします。

13 X. Yの2人が次の問題の解き方を相談しながら考え ている。 n番目に 4n-5 が書かれている数の列Aと, 7番目に n2-2n-1 が書かれている数の列Bがある。 ただし, nは自然数とする。 A,B を書き並べると, A: -1, 3,7, 11, 15, B: -2, -1,2,7, 14, A. Bに現れる数字を小さい順に並べた数の列をCとす るとき, 2023はCの中で何番目に現れるか。 X : 途中過程を書きやすいように, A. Bの番目の数を それぞれ an, b, と表すことにしよう。 Y : 例えばAの3番目の数は a3 で, 計算は4n-5に n=3 を代入した7になるから,a3=7と書けばいい んだね。 同じようにBの10番目の数を求めると, b10=アとなるね。 X : では, A,Bの規則性を見てみよう。 Aは an=4n-5 だから最初の -1 から4ずつ増えていく ことと,奇数しか現れないことがわかるけど, B はど うだろうか。 Y:bm=n²-2-1 だけど規則が読み取りにくいね。 規 則を見つけるために隣り合う数の差をとってみようか。 (n+1) 番目の数からn番目の数を引いてみよう。 X: b = n2-2n-1 だから bn+1-bn={(n+1)2-2(n+1)-1}-(n2-2n-1) =2n-1 となるね。 Y : ということは, 隣り合う数の差が必ず奇数だからBは 偶数から始まって偶数と奇数が交互に現れるね。 だけ ど,これだけではまだ特徴がわからないな。 X : そうしたら次はもう1つ離れた数との差をとってみよ うよ。 (n+2) 番目の数からn番目の数を引いてみよう。 Y: bn+2 -b を計算するとイ となるね。 X : わかった。 これと今までわかっている特徴を合わせる と問題が解けるね。 (1) ア イにあてはまる式や値を答えよ。 (2) Bの数の列において, 2023が何番目か求めよ。 (3) Cの数の列において, 2023が何番目か求めよ。 問題↓解説↑ 3 (1)(イ) bn+2=(n+2)-2(n+2)-1 =n2+2n-1より, bn+2-6m=n2+2n-1- (n2-2n - 1) = 4n (2) n2-2n-1=2023 (n+44)(n-46) = 0 n>0より, n = 46 (3)4n5= 2023 n= ¥507 より, Aの列において, 2023は507番目の数である。 Cの数の列において 2023までの数の個数は, A の数の 列における 2023 までの数の個数と、Bの数の列における 2023 までの数の個数の和からAの数の列とBの数の列に 共通する2023 を含めた数の個数を引けばよい。 A の数の 列とBの数の列に共通する数の列Dを書き並べると, D: -1, 7,23,47, ...... DはBの偶数番目の数が並んでいるから, n番目の数を dn とすると, dn=bzn=(2n)2-2 × 2n-1=4n²-4n-1 4n²-4n-1=2023 n2-n-506 = 0 >0より, n=23 (n+22) (n-23) = 0 よって, Cの数の列において, 2023 は, |507 +46-23530 ( 番目)

未解決 回答数: 0