学年

教科

質問の種類

数学 中学生

全てわからない

(2) 第2学 14. ABCD に次の条件を加えると,それぞれどんな四角形になるか答えなさい。 D 【思考・判断・表現】(3点×3点)A (1)AC=BD (2) AC=BD, AC⊥BD (3) AC⊥BD G ひし形 B 15. 右の図1で, △ABCの辺 AB 上に点Pをとり、点Pと頂点Cを 結ぶ。∠APC の二等分線をひき,辺 ACとの交点をQとすると, PQ // BC となった。 【思考・判断・表現】 (2点×2) (1) BPC の大きさをx, ∠AQPの大きさをとするとき, PCQの大きさをxとy を用いて表しなさい。 (2)図2は図1に点Qを通り,辺 AB に平行な直線をひき,辺BC との交点を R, 線分PCとの交点をSとし, 頂点と点 S, 点Pと 点R を結んだものである。 ▲BRSと面積の等しい三角形をすべて 答えなさい。 図1 B 図2 P 92 8(2) 12 =y-(90- is gov <PcQ=y-a △PBCより xctata=180 29 =180-2 a = 1800 た,それ =2C 2 △PRS ASCQ P BR 1a=5 10-5=5 6=5 16.大小2つのサイコロを同時に投げるとき,大きいサイコロの出た目の数を小さいサイコロの出 10-5=5 た目の数を とする。 このとき,次の確率を求めなさい。 2-6=5 4-6=5 a=2 a=1 ただし,どの目が出ることも同様に確からしいとする。 【思考・判断・表現】(3点×2) X (1) 2a-b=5 となる確率 36=12 a=4 b (2) 2直線 y=xとy=2x-1が交わる確率 8-6=5 a (1 b=3 TE 8-3=5 a=36-6=5 b=1 17. 次のア~エの中から正しいものだけを選び, 記号で答えなさい。 【思考・判断・表現】(4点) 6-1=5 ア3人でじゃんけんをするとき,1人だけが勝つ場合とあいこになる場合では,起こりやすさは同じである サイコロを60回投げると,1の目は必ず10回出る 2枚のコインを同時に投げたとき,起こりうる場合は「2枚とも表」, 「2枚とも裏」,「1枚は表で1枚は裏」 の全部で3通りとなり,どのことがらが起こることも同様に確からしい ぐあ エ赤球2個と白球3個と青球1個の6個が入っている箱の中から、同時に2個の球を取り出すとき, 2個とも白球になる確率が最も大きい ちょ は1人

回答募集中 回答数: 0
数学 中学生

すみません 早めに答えを教えていただきたいです!

[動点] [思考 3 AB=24cmの正方形 ABCD があります。 図1のように, 点 P, 点Qは頂点Bを同時に 出発し, 正方形ABCDの辺上を点Pは秒速1cm, 点Qは秒速3cmで動き, 点Rは,点P, 点Qが 頂点Bを出発すると同時に頂点Cを出発し, 正 方形 ABCDの辺上を秒速6cm で動きます。 点 P, 点Qは頂点Bを同時に出発して、頂点Cへ向 かって動き, 頂点Cと重なると止まります。 点 Rは頂点Cを出発して, 頂点Dを通り, 頂点A へ向かって動き, 頂点Aと重なると止まります。 図2は, 点P, 点Qが頂点B, 点Rが頂点Cを それぞれ同時に出発してから秒後の△PQR の面積をycm² とするとき, 点 P, 点Qが頂点 B, 点 R が頂点Cをそれぞれ同時に出発してか ら,点Pが頂点Cに重なるまでのxとyの関係をグラフに表したものです。 次の (1)~(3)に答えなさい。 (1) 点P, 点Qが頂点B, 点 R が頂点Cをそれぞれ同時に出発 してから3秒後のPQR の面積を求めなさい。 (2)の変域が4≦x≦8のとき, 点 R はどの辺上にありますか。 <(1) (2) 5点×2, (3) 17点〉 図 1 (解答) 図2 点P, 点Qが頂点B, 点 R が頂点Cを 192 96 y A BP→Q→ 048 prakt 辺 D それぞれ同時に出発してから ↑ ・R C IC 24 cm (3) 2回目に△PQR の面積が 84cmになるのは, 点P, 点Qが頂点B, 点 R が頂点Cを それぞれ同時に出発してから何秒後か求めなさい。 解答は,次の |内の条件 Ⅰ 〜 条件Ⅲにしたがってかきなさい。 2 条件Ⅰ 2回目に△PQR の面積が 84cm² になるæの変域と, そのxの変域のとき のxとyの関係を表す式をかくこと。 条件Ⅱ 条件 Ⅰ で求めた式を使って答えを求める過程をかくこと。 条件ⅡI 解答欄の [ | の中には、あてはまる数をかくこと。 上 秒後 4 〔道の 登山 一本道 屋まで では 8 あや を出子 一定 山小麦 午前 次 (1) 午前 山頂ま 説明 あてに (2) ア (説 あ て か

回答募集中 回答数: 0
1/42