学年

教科

質問の種類

数学 中学生

(2)が答えになりません。解き方がよく分かりません教えてください……ちなみに答えは2です

コ) 仕事 step B Step A ていこう 1 [仕事と仕事率] 次の実験について, あとの問いに答えなさい。 ただし,物体、滑車、 まさつ かり, 糸にはたらく摩擦力や空気の抵抗と, 滑車, ばねばかり、糸の重さ, および糸の (6点×3 みは考えないものとする。 〔実験1] 図1のように, 滑車とばねばかりを 〔図1] とりつけた重さ 2.4 Nの物体を床から10cm 離れた位置に静止させる。 この状態から,物 体を1cm/sの速さで真上に15cm 引き上げる。 〔実験2] 図2のように, 滑車をとりつけた重 さ2.4 Nの物体を, 滑車を動滑車として用いて 糸の片方の端にばねばかりをとりつけ, 床か ら10cm離れた位置に静止させる。 この状態 から,物体を一定の速さで真上に 15cm 引き 上げる。 し Step T う ī HALL 15cm 解答別冊 Î 10cm 〔2〕 糸 (1) 実験 1 動滑車 な数値を書 図1のよ 引き上げ (2) 実験 (i) まで,糸 (3) 実験 (i から実 につい 110cm (1) 実験1において, 物体を15cm 引き上げるの に必要な仕事は何Jか求めなさい。 また,実験1と実験2のように, 物体をある高さま 上げるのに必要な仕事の量は, 道具を使っても使わなくても変わらない。このことを何 か, ひらがな7字で書きなさい。 (2) 実験1と実験2で,物体を真上に 15cm 引き上げるときの仕事率が等しいとき, 実験 20 る, ばねばかりを引き上げる速さは何cm/sか求めなさい。 名称 (2) ら受 図2 力は (4) 図 15 か 3

回答募集中 回答数: 0
数学 中学生

中学数学です。 2️⃣の[1]の(2)がわかりません。 説明詳しくお願いします🙇

2 ります。と交わる点のうち煙が負である点をできれ (200) (43) ある点をDとする。 CD=12であるとき, ア I (1) 以下の会話文の空欄をうめよ。 ただしア, ものを解答群から選べ。 オ 9 千葉敬愛高 " A 6036 $&5 3.5 = 20 = 0 + (1-x) エ (2) 点Cの座標は, キ RSSOS 先生: 点Cの座標を求める方法をみんなで考えてみましょう。 CO 太郎:2点C,Dのx座標をそれぞれc, dとしてy座標を文字で表してみようよ。 花子 : ここからどうすればいいのかな? 先生: 2本の補助線を引いてみましょうか。 1本目は点Aを通りx軸と平行な直線, 2本目 GALE はBを通りy軸と平行な直線を引いて, これらの2直線が交わる点をEとするとどう でしょうか。 305=²* 花子:あっ、△ABEはアですね。 そうすると, ABの長さは イ ウ だね。 太郎 (1) OSCA * .68 そうか! 同じように点Cと点Dに対しても補助線を引いて2直線の交点をFとする 201 と△ABEエ △CDFになるよ。 36 先生: 良いところに気付きましたね。 花子:CF=オ DF=- いいんだね。 12 万 と表せるから、あとは対応する辺の比から式を立てれば SY SS 0S 19 カの解答群 - ク YA ケ WEBSJDM & ② ⑩ 二等辺三角形 ① 正三角形 直角三角形 (5) 6 d+ c ⑦ d-c 1 x 0-) x S+S - (1-x) All オカについては,最も適する コサ Ati 8 (d² - c²) ③ 直角二等辺三角形 83057 9 (d² + c²) スセである。

回答募集中 回答数: 0
数学 中学生

この赤い線引いたところがなんでこうなるのかが分かりません💦教えてください!

FAOA. [3] 1辺の長さが12である正方形OACB」がある。辺AIC 580k の長さを6等分する5つの点A2,A3,A4,A5,A6を,A1 に近い方から順に、辺A1C上にとる。 同様に, 辺BCを6等 分する5つの点B2, B3, B4,B5, B6を, B1 に近い方から 順に、辺BC上にとる。 このとき,次の各問いに答えよ。 (1)線分OA4,A4B4, OB」を右の図にかき入れると, 正方形 OACB1はある立体の展開図となる。 この立体の体積を求 めよ。 A| MAYO 日 の (2) 大小2つのさいころを投げ, 出た目の数によって動く点 PとQの位置を次のように定める。 大きいさいころの目の数を, 点A1, A2, A3, A4,A5, A6の各点の右下の数字と対応させ, その点の位置に点P をとる。 小さいさいころの目の数を B1, B2,B3,B4, B5, B6の各点の右下の数字と対応させ, その点の位置に 点Qをとる。 SALLE 例えば,大きいさいころの目が 2 で, 小さいさいころの 目が5であるとき, 点PとQは, それぞれ点A2, B5の位置 16730 JESROL にある。 10.HOS 20 B6 =-=x* A1 A2 A3 A4 A5 A6 C 0 0 163055 32時間 このとき,線分PQの長さが10となる確率を求めよ。 B #AASROC Cre KASEPUKOO SIF DOROHÁRB3 RUCSA) .58 A& B4 QB5 B6 A₁ A2 A3 A4 A5 A6 C B₁ B2 B3 BA C B5 B1 B2 S (3)(1)の展開図を組み立てて立体を作る際に,点A1, B1は点Cと重なるので頂点Cとみなすと, 立 体OABCができる。 (1)の展開図を組み立てる際に重なる他の点についても,次のように考え る。 ア) 点A2, A6が重なる点をR1 とおく。 イ) 点A3, A5が重なる点をR2とおく。 ウ) 点B2,B6が重なる点をSとおく。 エ) 点B3, B5が重なる点をS2とおく。 しである。 大小2つのさいころを投げ, 出た目の数によって動く点PとQの位置を(2)と同様に定める。 例えば,大きいさいころの目が2で 小さいさいころの目が5であるとき、点PとQは、それ ぞれ点R1, S2の位置にある。 このとき, 立体OA4B4Cと立体OPQCの体積の比が3:1となる確率を求めよ。

回答募集中 回答数: 0
1/6