学年

教科

質問の種類

数学 中学生

この問題で全体から隣り合う数を引いて求めようとしたのですが、答えが合いません

18710 から 999 までの整数の中で,少なくとも2つの位の数字が同じであるような 整数はいくつあるか。 vy v V せ 解答編 p.315 184 0, 1,2,3,4,5の6個の数字の中から異なる4個の数字を選んで4桁の整数 ☆☆☆☆ を 185 Kるとき,次のような数の個数を求めよ。 (1) 5の倍数 (2)9の倍数 あといい 1から7までの整数をすべて並べるとき,次のような並べ方は何通りあるか。 (1)1,2が隣り合い, 5, 6, 7がすべて隣り合う (2)両端と真ん中の数が奇数である 720 ・ 全て 5040 (3)17の間に2つ以上の数がある (2) 1861から9までの数字を1列に並べるとき,次の並べ方はいくつあるか。 ★★☆☆ (1)3の倍数が隣り合わない (2)奇数偶数が交互に並ぶ となり合う 6:x2!=1440 1つる 5:x2:×5=1200 奴 4P3、41=432,24 288 02 120 2 Z 240 126 04 264 24 7 0 0 0 4 24 24 196 96c 48 546 問18623456789 176 (1) COIN は何番目の文字列か。 188 ACTION の 6 文字から異なる4文字を使ってできる順列をアルファベット順 の辞書式に配列するとき,次の問に答えよ。 川すべて9:362880 てなり合う 71×31=30240 362 (2)215番目の文字列は何か。 189 A組5人, B組4人, C組3人, D組2人の合計14人の生徒が円形に並ぶとき, ★★☆☆ それぞれの組の生徒が続いて並ぶ並び方は何通りあるか。 190 父母と子ども6人の合計8人が円卓に座るとき,父母の間に子どもが1人だけ 入る座り方は何通りあるか。 191 赤球, 白球, 青球がそれぞれ1個ずつある。これらをそれぞれ A, B, C, D, E の5つの箱のいずれかに入れるとき,その入れ方は何通りあるか。 1927個の異なる色の球を1から3までの番号の付いた箱に入れるとき,どの箱も 空でないように入れる方法は何通りあるか。 章 362880-30240 362880 901 15 順列と組合せ 30240 =332640 332690 3

未解決 回答数: 0
数学 中学生

Q.答えが108/343なのですがなにが違うのかわからないです

す。 あれば、 練習問 題 B つうち,320 いてもよい。 8 赤、青、黄、緑、紫の5個の球を円形につなぎ合わせて首飾りを作るとき, ■かって着 9 P.6310(i) (回数 練習問題 63 1 赤白 2 赤有 10 11 数 15 10 何通りの作り方があるか。 a,b,c,d,e,f,gの7文字を1列に並べるとき,次のような並べ方 は何通りあるか。 (1) a, b, c のどれもが隣り合わない。 (2) a, b, c の文字が, a がbより左, bがcより左に並ぶ。 袋の中に赤球4個と白球3個が入っている。 袋から同時に2個の球を取 り出し、色を調べてから袋に戻す。これを3回繰り返すとき,取り出さ れる赤球の総数がちょうど4個となる確率を求めよ。 ある製品が不良品である確率は3%であり,この製品の品質検査では, 良品を良品と正しく判定する確率が99%であり、不良品を不良品と正 しく判定する確率が99% であるという。このとき、次の確率を求めよ。 (1)この製品が品質検査で不良品と判定される確率 (2)不良品と判定された製品が本当に不良品である確率 3. 赤赤 21 48 3144. 12 と と 場合の数と確率 4.3 4.3 * 712 124 7(2 24 4(2 49 7(2 12/4243 217217763 32 343 回数 12 原点から出発して数直線上を動く点Pがある。 点Pは,1枚の硬貨を 投げて表が出ると + 2だけ移動し, 裏が出ると+1だけ移動する。 この とき、次の問に答えよ。 赤 2 白白 20 (1) 硬貨を4回投げて, 点Pが4回目に座標5の点にちょうど到達する 確率を求めよ。 3 赤赤 412 412 3(2 (2)点Pが座標 3以上の点に初めて到達するまで硬貨を投げる。このと き, 投げる回数の期待値を求めよ。 7(27(2 5(2 13 袋の中に赤球4個, 白球2個がある。 袋から1個の球を取り出し、色を 記録して袋に戻す。 これを繰り返し, 赤白どちらかが3回記録されたと ころで終了とする。このとき,終了までに球を取り出す回数の期待値を 求めよ。 43.433/2 D 4 (i)(ii)より 312 3236 347

未解決 回答数: 1
数学 中学生

入試問題の一部で、 問題の意味は図でまとめたのですがそこから全く進みません。 面倒ですが誰か解いてくれる人、教えてください ①と②です

(③3) A駅とC駅の間を普通列車と急行列車が運行している。 A駅とC駅の間には普通列 車だけが止まるB駅があり, A駅からB駅までの距離は4km, B駅からC駅までの 01ROOPA 距離は6kmである。 20 普通列車はA駅を出発して分速1kmでB駅に向かい, B駅で1分間停車した後、 CO TARN 分速 1.2km で C駅に向かう。 このとき, 次の問いに答えよ。 ただし, 列車の長さは考えないものとし, また列車は各駅間を一定の速さで走るも 1 のとする。 ① 普通列車が A 駅を出発してからx分後のA駅からJ20 普通列車が進んだ距離をy kmとする。 8 普通列車が A 駅を出発してからC駅に到着するまで のx,yの関係をグラフに表すと概形は右の図のように なる。 このとき,図の点Pの座標は,(クケ である。 A 6km 4K B + ” ③ A-BO.1km コサ 12/20 10 O 45 P SM BAZORES 53 3301.24.7b41012 325417 B-C 1.2km、21 ② 急行列車は普通列車がA駅を出発した2分後にA駅を出発して, 時速 akmで C駅に向かって走り、普通列車がB駅で停車している間にB駅を通過した。 このとき, αがとることのできる値の範囲は, シス ≤a≤ セソタである。 x 0

回答募集中 回答数: 0
1/7