*42 第3章 2次関数
STEP<B>
第2節
2次方
20 放物線 y=2x"+x-1 を平行移動した曲線で,2点(-1, 6), (2, 3)、
を通る放物線の方程式を求めよ。
2次方程
放物線 y=ax"+bx+c を平行移動
求める放物線は,放物線 y=2x°+x-1 を平行移動した曲線であるから,その方程
I
1. 因数分
→ ソ=ax'+b'x+c' の形
指針
式は y=2x°+ bx+c と表される。
これが2点(-1, 6), (2, 3) を通るから
b-c=-4, 26+c=-5
2. 解のク
3=8+26+c
*つ+9-7=9
3. 解の
すなわち
これを解いてb=-3, c=1
y=2x°-3x+1 答
2次
よって
2
判別式。
169 次の条件を満たすような放物線の方程式を求めよ。
(1) 放物線 y=-3x+x-1 を平行移動した曲線で, 頂点が点(-2, 3) で
1. 異:
2. た
ある。
3. 実
*(2) 放物線 y=x?-3x を平行移動した曲線で, 2点 (2, 1), (4, 5)を通る。
I
170 2つの放物線 y=x°-3x, y=→+ax+b の頂点が一致するように, 定数
a, bの値を定めよ。
172 次
例題 21
放物線 y=2x"+3x を平行移動した曲線で,点 (1, 3) を通り, 頂点
が直線 y=2x-3 上にある放物線の方程式を求めよ。
173 ;
頂点が直線 y=2x-3 上にあるから, 頂点の座標を(p, 20-3)とおける。
求める放物線は,放物線 y=D2x°+3x を平行移動した曲線で, その頂点が直線
y=2x-3 上にあるから, その方程式は
解答
174
y=2(x-p+2p-3
と表される。これが点(1, 3) を通るから
3=2(1-+2p-3
整理して がーカー2=0
よって
(カ+1)(p-2)=0
y=2(x+1)"-5, y=2(x-2)"+1 番
(y=2r'+4x-3, y=2x°-8x+9 でもよい)
175
のに代入して
ゆえに p=-1, 2
171 1 故t物線