学年

教科

質問の種類

数学 中学生

一次関数の利用で①は[10.10]であってますか。 また②は問題の意味が全くわからなく何から求めればいいのかが理解できないです  わかる人教えてください(>_<)

(3) A駅とC駅の間を普通列車と急行列車が運行している。 A駅とC駅の間には普通列 車だけが止まるB駅があり, A駅からB駅までの距離は4km, B駅からC駅までの 距離は6kmである。 普通列車はA駅を出発して分速1kmでB駅に向かい, B駅で1分間停車した後、 分速 1.2kmでC駅に向かう。 このとき, 次の問いに答えよ。 ただし, 列車の長さは考えないものとし, また列車は各駅間を一定の速さで走るも のとする。 13 ① 普通列車がA駅を出発してからx分後のA駅から(-2,ZO 8 普通列車が進んだ距離をy kmとする。 普通列車が A 駅を出発してからC駅に到着するまで のx,yの関係をグラフに表すと概形は右の図のように なる。 このとき, 図の点Pの座標は, (クケ である。 4 出 A 6km 4KB from c A-B @ 1k B-1.2ma.2 3 , コサ) 2 11.2. 33, 10 4 るこ 52 45 -25 34-75-198 X9S ② 急行列車は普通列車がA駅を出発した2分後にA駅を出発して、 時速 akmで C駅に向かって走り、 普通列車がB駅で停車している間にB駅を通過した。 このとき, αがとることのできる値の範囲は, シス ≦a≦ センタである。

回答募集中 回答数: 0
数学 中学生

入試問題の一部で、 問題の意味は図でまとめたのですがそこから全く進みません。 面倒ですが誰か解いてくれる人、教えてください ①と②です

(③3) A駅とC駅の間を普通列車と急行列車が運行している。 A駅とC駅の間には普通列 車だけが止まるB駅があり, A駅からB駅までの距離は4km, B駅からC駅までの 01ROOPA 距離は6kmである。 20 普通列車はA駅を出発して分速1kmでB駅に向かい, B駅で1分間停車した後、 CO TARN 分速 1.2km で C駅に向かう。 このとき, 次の問いに答えよ。 ただし, 列車の長さは考えないものとし, また列車は各駅間を一定の速さで走るも 1 のとする。 ① 普通列車が A 駅を出発してからx分後のA駅からJ20 普通列車が進んだ距離をy kmとする。 8 普通列車が A 駅を出発してからC駅に到着するまで のx,yの関係をグラフに表すと概形は右の図のように なる。 このとき,図の点Pの座標は,(クケ である。 A 6km 4K B + ” ③ A-BO.1km コサ 12/20 10 O 45 P SM BAZORES 53 3301.24.7b41012 325417 B-C 1.2km、21 ② 急行列車は普通列車がA駅を出発した2分後にA駅を出発して, 時速 akmで C駅に向かって走り、普通列車がB駅で停車している間にB駅を通過した。 このとき, αがとることのできる値の範囲は, シス ≤a≤ セソタである。 x 0

回答募集中 回答数: 0
数学 中学生

(6)の④がわかりません😢 教えてください🙇‍♀️

(4) 表Iより 電気抵抗が5Ωのとき, 0.60A の電流が流れたので, オームの法則より, 5 (Ω)×0.60 (A) = につなぐ。 3 (V) ⑥ 発生する熱の量は電流を流した時間に比例する。 (5) 解答例の他に, 自由電子伝導電子・価電子,でもよい。 118 (6) ① ② 表 I において, 10 (Ω) 5 (Ω) になるので、電気抵抗と電流の関係は反比例。 表ⅡIにおいて, = 2 (倍), (6) 1① ア できる水の質量は, 100(g)× (3) ①1イ 電圧が2倍になると電流は2倍になるので、電圧と電流の関係は比例。表Ⅲにおいて、 1 ときの2倍になるので、水の流れにくさ(電気抵抗)は 2 (右図) 0.30 (A) 1 2 0.60 (A) = (2) I (倍)より、電気抵抗が2倍になると電流は! 1 ③ キ 10 (V) 5 (V) 0.84 (L) 0.42 (L) 間に管を通る水量は比例。 ③ 表Ⅲより, 水位の差が 7.0cm のとき, 1分間に1本の管を通る水量は0.84Lな ので, 1分間に2本の管を通る水量は 0.84 (L)×2(本) 1.68 (L) よって, 1分間にdから出る水量も = 2 (倍) より 水位の差が2倍になると1分間に管を通る水量は2倍になるので、水位の差と1分 ④ケ (7) 4(L) 1.68L ④ 図ⅣVのように2本の管をつないだとき, 1分間に2本の管を通る水量は、1本の管だけをつないだ = = 2 (倍), 0.30 (A) 0.15 (A) 倍になる。 (7) 0.2W の仕事率で, 1分間 = 60 秒間に行う仕事の大きさは,0.2(W)×60(s) = 12 (J) 12J の仕事で 30cm = 0.3mの高さまで運ぶことができる水の重さは, 12 (J) 20.3(m) = 40 (N) 40N の力で持ち上げることの 40 (N) 1 (N) x 34 ②ウ (4) ⓐ3 ⑥ ア (5) 電子 7.0 (cm) 3.5(cm) 2 2 (倍)より、 = 2 (倍), #LINE 4000 (g)より, 4kg 4kg の水の体積は4L。

回答募集中 回答数: 0
数学 中学生

⑶が何度解いても分かりません. 答えは50°です. わかることだけ写真に書き込みました. なぜ50°になるのか教えてください.

【問3】啓さんと静さんは、時計の長針と短針がつくる角について考えている。 各問いに答 えなさい。 1 図1のように. 文字盤に1から12までの数字が書かれた 円形の時計があり, この円の中心をOとする。 3点A,B, Cは円Oの周上の点であり, 矢印 OA. OB, OC はそれぞ れ「12の目盛りへの向き」 「短針の向き」 「長針の向き」 を示している。 (1) 啓さんと静さんは、長針と短針の進み方について会話を している。 会話文1のあに当てはまる適切な数を書 きなさい。 0.5 会話文 1 図 1 * 10 6 F-9 .8 11 7 12 O 6 4:00 5 2 4 啓 長針は1時間に1回転するから, 360606 で, 1分間に6° ずつ進むね。 静短針は、長針が1回転するごとに, 12→1→2→3→・・・ と. 隣の文字に1つ ずつ移動するよ。 啓: そうすると, 短針は1時間に30° ずつ進むから. 1分間にあずつ進むね。 静 その通り。 20.5 (2)午前0時から午前6時までの間で, ∠AOB = 75° となるときがある。このときの時刻 は午前何時何分か求めなさい。 午前2時30分 (3) 午前4時40分のとき, CAB の大きさを求めなさい。 ∠AOB A B 120°+80 360-2060m 200 160 4:40= 00

解決済み 回答数: 1