学年

教科

質問の種類

数学 中学生

(3)Bさんの式をグラフに表すとどうなりますか?

一次関数と方程式 (福岡) 東西に一直線にのびたジョギングコース上に, P地 2400% 点と, P地点から東に540m離れたQ地点と, Q地点 から東に1860m離れたR地点とがある。 Aさんは, このジョギングコースを通ってP地点とR地点の間を 1往復した。 Aさんは, P地点からQ地点まで一定の速さで9分 間歩き, Q地点で立ち止まってストレッチをした後, R地点に向かって分速 150mで走った。 Aさんは,P 地点を出発してから28分後にR地点に着き、 すぐに P地点に向かって分速150mで走ったところ, P地点 を出発してから44分後に再びP地点に着いた。 Q 540円 0 9 28 44 図は,AさんがP地点を出発してからx分後にP地点からym離れていると するとき, P地点を出発してから再びP地点に着くまでのxとyの関係をグラ フに表したものである。 次の問いに最も簡単な数で答えよ。 (1) AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何m か求めよ。 (1) 分速 60 m 540mの距離を9分で歩いているから, 540÷9=60(m/分) 1860~150mmで走った時間 (2) 15 分 36 秒後 (2) AさんがQ地点からR地点に向かって走り始めたのは, P地点を出発してか ら何分何秒後か求めよ。 (3) 1800 m 1860 78 3 28- 3 -=150(分) 3 1分=60秒x=36秒 じゃん = 150 5 (3) Bさんは, AさんがP地点を出発した後しばらくして, R地点を出発し,こ のジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。 Bさんは, P地点に向かう途中で, R 地点に向かって走っているAさんとす れちがい,AさんがP地点を出発してから39分後に, P地点に向かって走っ ているAさんに追いつかれた。 AさんとBさんがすれちがった地点は, P地点から何m離れているか求め よ。 BさんがAさんに追いつかれた地点=Aさんが出発してから39 分後 にいる地点→44分後にP地点に着いたから、 P地点から5(分)×150(m/分)=750 (m)の地点。 BさんがR地点からP地点に向かうときの式は,y=-70x+αで, 750=-70×39+aa=3480より,y=-70x+3480X AさんがQ地点からR地点に向かうときの式は,y=150x+bで, 2400=150×28+b b = -1800 より,y=150x-1800 2人がすれちがったのは, -70x+3480=150x-1800 これを解いて, x=24より, Aさんが出発してから24分後。 (2) Q地点からR地点まで 走った時間は1860 150 =12.4(分)=12分24秒。 この時間を到着した28分 後から引く。 (3) Aさんが出発してから 24分後の位置は, 150×24-1800=1800(m) より, P地点から1800m の地点。

回答募集中 回答数: 0
数学 中学生

(5)の(ア)と(イ)の解説お願いします!!

4 右の図のように, 東西にの 太郎さん 花子さん びるまっすぐな道路上に 地点Pと地点Qがある。 太郎さんは地点Qに向 かって,この道路の地点Pよ り西を秒速3mで走っていた。 西 -東 花子さんは地点Pに止まっていたが, 太郎さんが地点Pに到着する直前に,この道路を 地点Qに向かって自転車で出発した。 花子さんは地点Pを出発してから8秒間はしだいに 速さを増していき、 その後は一定の速さで走行し, 地点P を出発してから12秒後に地点Q に到着した。 花子さんが地点P を出発してからx秒間に進む距離をym とすると, xとyと の関係は下の表のようになり, 0≦x≦8の範囲ではxとy との関係は y=ax2 で表され るという。 x (F) 0 ア 8 10 *** 12 y (m) 0 4 16 24 イ 次の(1)~(5)の問いに答えなさい。 (1) a の値を求めなさい。 (2) 表中のア, イにあてはまる数を求めなさい。 (3) xの変域を 8 ≦x≦12 とするとき と との関係を式で表しなさい。 (4)xyとの関係を表すグラフをかきなさい (0≦x≦12) (5) 花子さんは地点P を出発してから2秒後に, 太郎さんに追いつかれた。 (ア) 花子さんが地点Pを出発したとき, 花子さんと太郎さんの距離は何m であったかを 求めなさい。 (イ) 花子さんは太郎さんに追いつかれ, 一度は追い越されたが,その後, 太郎さんに追い ついた。 花子さんが太郎さんに追いついたのは, 花子さんが地点Pを出発してから何 秒後であったかを求めなさい。

回答募集中 回答数: 0
数学 中学生

この問題の解説お願いします!!! 答えも載せておきます!!

4 右の図のように,水平に置かれた直方体状 の容器があり、その中には水をさえぎるため に、底面と垂直な長方形のしきりがある。 し きりで分けられた底面のうち、頂点Qを含 む底面をA, 頂点R を含む底面をBとし, Bの面積はAの面積の2倍である。 管aを 開くと, A側から水が入り、 管bを開く と, B側から水が入る。 aとbの1分間あた りの給水量は同じで、一定である。 40cm a 5 130cm A B R A側の水面の高さは辺QPで測る。 いま, aとbを同時に開くと, 10分後にA側の水面 の高さが30cmになり, 20分後に容器が満水になった。 管を開いてからx分後のA側の水 面の高さをycm とすると, xとyとの関係は下の表のようになった。 ただし, しきりの厚 さは考えないものとする。 (分) 0 6 ... 10 15 *** 20 y (cm) 0 ... ア 30 イ ... 40 次の(1)~(4)の問いに答えなさい。 (1)表中のアイに当てはまる数を求めなさい。 (2)xと」との関係を表すグラフをかきなさい。 (0≦x≦20) (3)xの変域を次の(ア), (イ)とするとき,x と y との関係を式で表しなさい。 (ア) 010 のとき (イ) 15≦x≦20 のとき (4)B側の水面の高さは辺RSで測る。 管を開いてから容器が満水になるまでの間で, A側 の水面の高さとB側の水面の高さの差が2cmになるときが2回あった。管を開いてから 何分何秒後であったかを, それぞれ求めなさい。

回答募集中 回答数: 0
数学 中学生

【大至急 一次関数の利用】(2)の②がわかりません。 詳しい解説お願いします🙇🏻‍♀️

3 A町とD町の間を2台のバス, gが往復しています。 図1のように,A町バス停とD 町バス停の間に,順にB町, C町のバス停があり, A町バス停から8000m離れたところ B町バス停があり、その間にE地点があります。 B町バス停から7000m離れたところ C町バス停があり,さらにC町バス停から5000m離れたところにD町バス停がありま す。ただし,A町,B町,C町, D町のバス停とE地点は,一直線の道沿いにあり,2 台のバスは,それぞれこの道を移動することとします。後の(1),(2)の各問いに答えな さい。 図 1 am 8:4 A 町 84~2 E地点 B町 8000m CHT DHJ -7000m 5000m (1)バス』はA町バス停を午前8時に出発しました。 A町バス停からxm離れたところにあ るE地点までは分速600mで進み,E地点を通過すると同時に分速500mで進み, B町バス 停には午前8時14分に到着しました。 xの値を求めなさい。 14 600×14= 2400 (2) バスカはB町バス停に午前8時14分から何分間か停車し, その後一定の速さでC町バ ス停に進み, C町バス停でも何分間か停車しました。 図2は、バスの移動のようすに ついて,午前8時x分のA町バス停からの距離をymとして,xとyの関係をグラフに表 したものです。 ただし,グラフではバスがB町バス停に着いてからC町バス停を出発 するまでの移動のようすを示しています。 後の①、②の各問いに答えなさい。 図2 (m)y 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 10 20 x 30 30 分 (分)

回答募集中 回答数: 0
数学 中学生

(4)の問題がわかりません。

2 ばねにはたらく力について調べるため、次の実験12を行いました。 これに関して、あとの(1)~(4) の問いに答えなさい。 ただし, ばねの質量は考えないものとし、 質量 100gの物体にはたらく重力の大 きさを1Nとします。 実験 1 ① 水平な台の上にスタンドを置き、つり棒を使ってば 図1 ねX をつるした。 つり棒 ② 図1のように, ばねXに1個 20gのおもりをつる し ばね X の長さを調べた。 ③ ばねにつるす, 1個 20gのおもりの数を変えなが ら,②と同様にしてばねXの長さを調べた。 ④ばねXのかわりにばねY を使い, ② ③と同様の実 ものさし 験を行った。 2 表は,②~④の結果をまとめたものである。 表 08 Tib おもりの数 0 1 2 3 4 5 ばね X の長さ [cm] ばね Yの長さ [cm] 4.0 6.06 6.8 5.2 7.6 8.4 9.2 10.0 6.4 7.6 8.8 10.0 図2 ⑤ ばね X と Y を図2のようにつなぎ、 ある質量の物 体Aをつるしたところ, ばね X と Y をつないだ全体 の長さは 17.0cmになった。 ばね X つり棒 (1) 次の文章は, 実験1の結果について述べたものである。 文章中の 「力」, 「比例」 ということばを用いて簡潔に書きなさい。 にあてはまる内容を, あと列する 表から, ばね XとYののびをそれぞれ求めることができる。 その結果から, ばねののびは ということがわかる。 ばねを引力の大きさにする。 (2) 図4は, つり棒を使ってばねをつるし, そのばねにおもりをつ るして, 静止した状態を表している。 また, F1~F5の矢印は, つりばね、おもりにはたらく力を表している。 F1~Fのう ち, ばねにはたらく力を組み合わせたものとして最も適当なもの 次のア~エのうちから一つ選び、その符号を書きなさい。 F1 F2 図4 つり棒 F F2 ばね F1とF4 ウ F3とF4 エ F3とFs F3 おもり FA Fs (3) 次の文章は, 実験1の⑤について述べたものである。 文章中の m も適当な数値を,それぞれ書きなさい。 n にあてはまる最 ばね X Y 物体A -12 X ばね XとYを図2のようにつないだとき, 加わる力が0.1N大きくなると, つないだばね全体 ののびが m cm大きくなる。 物体Aをつるしたとき, ばねX と Y をつないだ全体の長さ が 17.0cmになったことから, 物体Aの質量は n gであることがわかる。 \ > 10 h > 70g WALBUST (4) 実験2で, ばね Xの長さが7.2cmになったとき、 電子てんびんが示す値は何Nか,書きなさい。 0 6.07.2 0.7N 060-772 実験 2 ① 図3のように, 実験1で使用したばね Xに, 直方体 質量100gの物体Bをつるし, つり棒の位置を少 しずつ下げながら, 電子てんびんの上に降ろしていっ た。 ② 物体Bの底面と電子てんびんが接し, 電子てんびん がONを示したところから, ばねののびが0cmにな るまで, 電子てんびんが示した値とばねののびの関係 を調べた。 図3 -物体B 計量皿 電子てんびん -2- 5:20=x17 20×85 x=00 -3-

回答募集中 回答数: 0
数学 中学生

解き方わからないので教えて欲しいです

ートテスト④ (2次関数)を以下の日程で行います。 全クラス 期末テスト後最初の授業 (2次方程式と一緒にやります) 追試 22日 (金) 放課後3-3 問題は以下の通りです。 2学期の成績は、 レポートテスト次第 3/4 1. 関数y=ax2 のグラフの特徴を2つあげなさい。 どの2つをかいてもよい。 (完答1点) 2.2次関数y=2x24x+3のグラフの書き方。 (1点×2) ※既習事項を生かしての穴埋めになっていますが、 グラフの書き方を調べておきましょう。 3.図の長方形ABCD は、 AB=4cm、AD=2cmであり、 辺AB, CDの中点をそれぞれE,Fとし、線分 E Fをひく。 2点P,Qは、同時にAを出発し、Pは毎秒1cmの速さで辺上をA→E→B→Cの順に動き、 Cで停止する。 Q は毎秒1cmの速さで辺や線分上をA→D→F→Eの順に動き、Eで停止する。 P, Qが出発してから秒後の三角形APQの面積をcmとして、その変化の様子を調べる。 次の問に 答えなさい。 ただし、3点A, P,Qが一直線上にあるとき、 = 0 とする。 (1点×4) (1)x=3のとき、 の値を求めなさい。 (2)≦x≦6のとき、y=0のとき、x=t である。tの値を 求めなさい。 (3) 4≦x≦tのとき の式で表しなさい。 (4)P,Q が出発してから停止するまでの、との関係を表す グラフを図にかきなさい。 D 1 E 1.3はについては、まったく同じ問題です!2は調べて準備しておきましょう。 4. 図のように、 △ABC と長方形 DEFGが並んでいます。 長方形を固定し、 点Cが点Fに重なる まで三角形が矢印方向に移動するとします。 三角形の動く速さを秒速1cm、 秒後の重なっている IC 部分の面積をcmとする。 このときの問題。 (1点×3) A 4cm ※(3) はこれ↓ -4cm C (E) 8cm- Acm (3) 問題の条件変更や付け加えを1つ考えて問題をつくりなさい。 また、 問題の意図や解答などを 文章や図で説明しなさい。 4は (3) はそのままです。 (1)~(2)は問題を予想しておきましょう。 L

回答募集中 回答数: 0
数学 中学生

大大至急お願いしたいです!! 3つの問題共どうしても、わかりません… 中3生の問題です。 (1)はイだと思っているのですが、それも確かか分かりません… 道のり系の計算が得意な方、お願いします🙇‍♀️ できれば、早めに誰かお返事もらえると嬉しいです!

2 太 と弟の次郎さんは,同じ学校に通っ ており,家から学校まで一直線の道を歩いて通 学 公園 校 (m) 900 人 m92人の間の距離 (150円 学しています。 ある日, 太郎さんは7時に家を 出発して一定の速さで歩き、 途中にある公園で 休憩してから,休憩前と同じ速さで学校まで歩 きました。 次郎さんは, 太郎さんより遅れて家 を出発し、 途中で休憩することなく一定の速さ で学校まで歩きました。 2人は学校には7時 40 分に同時に着きました。 右の図は、このときの 時刻と2人の間の距離の関係をグラフに表したものです。 (1) 7時分における家からの道のりをymとします。 次のア~エのうち, 太郎さんと次郎さんそれぞれについて, 家を出発してから学校に着くまで の,xとyの関係を表しているグラフはどれですか。 15分152025 40(分) (7時) 時刻 1168 〈香川〉 ア イ ウ エ y y 太郎 太郎 太郎 太郎 次郎 次郎 /次郎 次郎 O 152025 40 0 152025 40 0 152025 40 0 152025 40 (2) 太郎さんが公園を出てから学校に着くまでのある時刻における, 太郎さ んと次郎さんの家からの道のりはそれぞれ何m ですか。 ある時刻を7時 x分として,x を使った式で表しなさい。 (3) 公園と学校の途中にある建物Aの前を, 太郎さんは7時α分に通過し, その4分後の7時6分に次郎さんが通過しました。 このとき, a, b の値 を求めなさい。

回答募集中 回答数: 0