学年

教科

質問の種類

数学 中学生

49がわかりません。特に一番とかは苦手なので教えて欲しいです

ものである。 このとき. 次の問いに答えなさい。 (1)a の値を求めると, a=である。 [大成] (2)給水開始から分後の水そう内の水量をyLとす あるとき、水そう②についてのxとyの関係を表す式 を求めなさい。 49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり、4点B, C, H, Eはこの順に直線l 上にある。 四角形 EFGHを固定し, 四角形ABCDを 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってから秒後の2つの台形が重なった部分の 面積をycmとする。 ⑦ 六角形 ⑧ 八角形 数学 (2)会話文中のイウにあてはまる数を答えなさ い。 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 [図形 (1・2年)〕 50 次のそれぞれの図でℓ//mのとき, xの大きさ を求めなさい。 (2) 18° (1) これについて, PさんとQさんが下記のように会話 したあとの問いに答えなさい。 〔豊川〕 27cm D G 5cm 35 [誉] m 180° 32 [桜丘〕 B C H 10cm Pさん: 重なる部分の形はxの値によって変化す るね。 Qさん: 例えば, x=4のとき, 重なる部分の形 はアになるね。 51 下の図において4つの直線k, lm, nがあり、 l/m, linであるとき, xの大きさを求めなさい。 最大 [名古屋大谷〕 k n Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 72° Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん:わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からxの値を 求めてみるのはどうかな。 Pさん:いいね。 やってみよう。 Qさん:では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって、x= とカだったよ。 オ Q さん: よくわかったね。 最後に,yをxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをxの 142° x m 52 下の図の△ABCにおいて,∠A=36°であり, 点 Dは∠Bと∠Cの二等分線の交点である。 このとき xの大きさを求めなさい。 T 36° [高専〕 A 式で表すと, y=ーキx+クケとなっ たよ。 (1)会話文中のアにあてはまるものとして適当なも のを,次の①~⑧ の中から選びなさい。 ① 正方形 ② 長方形 ③ ひし形 ④ 平行四辺形 ⑤ 台形 ⑥五角形 B 53 次の問いに答えなさい。 C (1) 十二角形の内角の和は何度か,求めなさい。 [東海学園] 1つの外角の大きさが40°である正多角形は,正 角形ですか。 [名工〕 次のそれぞれの図で, xの大きさを求めなさい。 - 41

未解決 回答数: 1
数学 中学生

規則性の問題です。 答えは(n-1)²×6-(n-2)²×6 =12n-18です。 式をどうやって組み立てたか等教えて頂けると嬉しいです!

先生「1辺の長さが1cmの小さい立 方体をたくさん用意して,これ らをすき間なく並べたものを積 み重ねて、大きい立方体をつく ります。 図1、図2図3は, それぞれ,大きい立方体の1辺 の長さが2cm3cm4cmの 場合を示しています。 (5)次は,先生とAさんの会話です。 これを読んで,下の①,②に答えなさい。 273 CAJARK 80 (ii) 図1 -(iii) ( 図28コ 図3 このとき、つくった大きい立方体を外側から見て,小さい立方体の面が何面見えるか を考えます。ただし、大きい立方体の6つの面はすべて外側から見えるものとします。 すると、図1の場合、8個の小さい立方体は,すべて外側から3面が見えます。図2の場 合,27個の小さい立方体のうち、(i)のように3面が見えるものは8個, (i)のように2面 が見えるものは12個あります。 では, (i)のように1面が見えるものは何個あるか数えて みましょう。また、外側からまったく面が見えないものは何個あるか求めてみましょう。」 Aさん「図2の場合, (ii)のように1面が見えるものを数えると6個あり,外側からまったく面が 見えないものは1個と求められます。」 01 先生「そうですね。次の表は,大きい立方体の1辺の長さと、外側から見える面が3面~1面 および外側からまったく面が見えない小さい立方体の個数との関係を整理したもので す。 大きい立方体の1辺の長さが6cmの場合はどうなるか考えてみましょう。」 大きい立方体の1辺の長さ(cm) 外側から3面が見える小さい立方体の個数(個) 外側から2面が見える小さい立方体の個数(個) 外側から1面が見える小さい立方体の個数(個) 2 3 4 56.. 800 |外側からまったく面が見えない小さい立方体の個数(個) 0 小さい立方体の個数の合計(個) -8|2 8 8 r 12 24 3648 62454 I 8 2764 8 27 64 125 Aさん「この表から考えると,大きい立方体の1辺の長さが6cmの場合、外側から3面が見え る小さい立方体は8個外側から2面が見える小さい立方体は 個外側からまっ たく面が見えない小さい立方体は64個です。 ここまでは、大きい立方体の1辺の長さ と小さい立方体の個数との関係がわかりました。ただ、外側から1面が見える小さい立 りました。ただ、 方体についてはわかりません。」 先生「外側から1面が見える小さい立方体は、 図2の (ii) のように, 大きい立方体の頂点や辺を 含まない位置にありますから、まず大きい立方体の1つの面に,外側から1面が見える 小さい立方体が何個あるのかを考え、その個数に大きい立方体の面の数をかけるとよい 「でしょう。」 0813 Aさん「なるほど。 外側から1面が見える小さい立方体は, 16×6で, 96個ですね。」 ×66 先生 「正解です。 よくできました。」

回答募集中 回答数: 0
数学 中学生

一次関数の入試問題です。 教えてください

49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり, 4点B, C, H, Eはこの順に直線 l 上にある。 四角形 EFGHを固定し, 四角形ABCD を 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってからx秒後の2つの台形が重なった部分の 面積をycmとする。 これについて,PさんとQさんが下記のように会話 した。 あとの問いに答えなさい。 〔豊川〕 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 5cm/ .7cm- D G 4 cm B C 10cm H [E Pさん: 重なる部分の形はの値によって変化す るね。 Qさん: 例えば,r=4のとき, 重なる部分の形 はアになるね。 Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん: わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からェの値を 求めてみるのはどうかな。 Pさん:いいね。やってみよう。 Qさん: では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって, x= とカだったよ。 I オ Qさん: よくわかったね。 最後に, y をxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをェの 式で表すと, y=-キ x+クケとなっ たよ。

回答募集中 回答数: 0
数学 中学生

多角形の場合どのように変化していくのかを数字で表すことが難しくてわかりません 教えてください

49 下の図で、四角形ABCDと四角形 EFGHは合同 な台形であり, 4点B, C, H, Eはこの順に直線 l 上にある。 四角形 EFGHを固定し, 四角形ABCD を 矢印の方向に毎秒2cmの速さで動かす。 点Cが点H と重なってからx秒後の2つの台形が重なった部分の 面積をycmとする。 これについて,PさんとQさんが下記のように会話 した。 あとの問いに答えなさい。 〔豊川〕 (3)会話文中のエ~カにあてはまる数を答えなさ い。 (4) 会話文中のキーケにあてはまる数を答えなさ い。 5cm/ .7cm- D G 4 cm B C 10cm H [E Pさん: 重なる部分の形はの値によって変化す るね。 Qさん: 例えば,r=4のとき, 重なる部分の形 はアになるね。 Pさん: 次は重なる部分の面積について考えてみ よう。 例えば, x=2のときのyの値はど うなるかな。 Qさん:まず,どのような形になるかを考えてか ら面積を求めるとよさそうだね。 Pさん: わかった! x=2のとき,y=イウと なったよ。 Qさん:今度は, 重なる部分の面積からェの値を 求めてみるのはどうかな。 Pさん:いいね。やってみよう。 Qさん: では,y=20になるときのxの値を求め てみて! Pさん: y=20となるときは2回あって, x= とカだったよ。 I オ Qさん: よくわかったね。 最後に, y をxの式で 表してみようよ。 Pさん:いいよ。 点Dが点Fと重なってから点A が点Fと重なるまでについて,yをェの 式で表すと, y=-キ x+クケとなっ たよ。

回答募集中 回答数: 0
数学 中学生

(2)の考え方がわかりません。答えは8です。

3次は先生とAさんの会話です。これを読んで、下の各問に答えなさい。 (11点 ) 649 先生 「3つの箱 ① ② ③と1以上の自然数が1つず つ書かれたカードがたくさんあります。 右の図1のよう に1が書かれたカードを箱①に、2が書かれたカード を箱②に3が書かれたカードを箱 ③に, 4が書かれた カードを箱①に, 5が書かれたカードを箱②に,....... とカードを規則的に箱に入れていきます。」 4 ↓ ① ② ③ 図1 Aさん「それぞれの箱に入っているカードに書かれた数には、何か決まりがありそうです。」 先生「そうですね。それでは、箱 ②からカードを2枚取り出し,それらのカードに書かれた数 の和について考えてみましょう。 何か決まりはありますか。」 Aさん「2枚のカードに書かれた数の和を3でわると,余りはいつでもアになります。」 先生「よくできました。 それで は、箱を6つに増やし、 箱① ② ③ 箱 ④. 箱⑤ ⑥として、箱が 3つのときと同じよう にカードを規則的に箱 に入れていきましょう。 2 ↓ ↓ 38 7 8 136 9 ④4 ←回同・ 10 11 ↓ 6 1209 159 ① ② ③ ④ ⑤ ⑥ ↓ ↓ ↓ ↓ ↓ P Q R S T U 図2 そして,箱①~箱⑥から,それぞれカードを1枚ずつ取り出していき, 取り出したカー ドに書かれた数をそれぞれ, P. Q. R, S, T. Uとします (図2)。 何か気づいた ことはありますか。」 Aさん「Uはいつでも6の倍数です。また,PとTの和もいつでも6の倍数になります。」 先生「そうですね。でも,PUの6つの数の中から2つの数を選んだとき,その数の和が 6の倍数になるのは,PとTの組み合わせ以外にもありますよ。」 Aさん「本当ですね。QとSの和もいつでも6の倍数になります。 同じように、P~Uの6つ の数の中から、3つの数4つの数 5つの数を選んだとき、その数の和が6の倍数に なる組み合わせは、全部でイ通りあります。」 先生「そのとおりです。 よくできましたね。」 (1)アにあてはまる数を、途中の説明も書いて求めなさい。 その際, 「α 6を0以上の整数とす ると、箱から取り出した2枚のカードに書かれた数は、それぞれ」に続けて書きなさい。(6点) (2)イにあてはまる数を求めなさい。(5点)

未解決 回答数: 0
数学 中学生

①と②両方分かりません😭 教えてくれると嬉しいです

(5)次は、先生とAさんの会話です。これを読んで、下の①、②に答えなさい。 先生「1から9までの9つの自然数の中から、3つの自然数を選んでください。 このとき3つ とも異なる自然数を選んでください。」 Aさん 「1, 4, 6を選びました。」 先生「選んだ3つの自然数を使って3けたの整数をつくります。 その中で,最も大きい数をX. 最も小さい数をYとします。」 Aさん「はい。 1,4,6を選んだ場合は, Xは641, Yは146ですね。」 先生 「そのとおりです。 次に, X-Y を計算してください。」 Aさん 「495になりました。」 じつ 先生「そうですね。 実は,どの3つの自然数を選んでも, X-Y の値は必ずある整数の倍数 になります。 X-Y の値がどんな整数の倍数になるか調べてみましょう。まず、選ん 3つの自然数を大きい順にa,b,cとします。 このとき,X,Yを,それぞれ,a, bcを使って表してください。」 Aさん 「Xは(100α +10b+c),Yは ( [ ア ■)と表せます。」 先生 「そのとおりです。 したがって, X-Y を計算すると, イ (α-c)になることから, X-Y の値がイ の倍数になることがわかりますね。」 Aさん「なるほど。」 先生「では,X - Y = 693 となるときのXのうち, 最も大きいXを求めてください。」 Aさん「ウです。」 先生 「正解です。 よくできました。」 ア ] にあてはまる式を, a, b, c を使った最も簡単な形で書きなさい。 また, [イにあてはまる数を求めなさい (2つのイには同じ数が入ります)。 (4点) (2 ウにあてはまる数を求めなさい。(5点)

未解決 回答数: 1
数学 中学生

2023 市川高等学校 数学 (3)の詳しい解説をお願いします。

13 X. Yの2人が次の問題の解き方を相談しながら考え ている。 n番目に 4n-5 が書かれている数の列Aと, 7番目に n2-2n-1 が書かれている数の列Bがある。 ただし, nは自然数とする。 A,B を書き並べると, A: -1, 3,7, 11, 15, B: -2, -1,2,7, 14, A. Bに現れる数字を小さい順に並べた数の列をCとす るとき, 2023はCの中で何番目に現れるか。 X : 途中過程を書きやすいように, A. Bの番目の数を それぞれ an, b, と表すことにしよう。 Y : 例えばAの3番目の数は a3 で, 計算は4n-5に n=3 を代入した7になるから,a3=7と書けばいい んだね。 同じようにBの10番目の数を求めると, b10=アとなるね。 X : では, A,Bの規則性を見てみよう。 Aは an=4n-5 だから最初の -1 から4ずつ増えていく ことと,奇数しか現れないことがわかるけど, B はど うだろうか。 Y:bm=n²-2-1 だけど規則が読み取りにくいね。 規 則を見つけるために隣り合う数の差をとってみようか。 (n+1) 番目の数からn番目の数を引いてみよう。 X: b = n2-2n-1 だから bn+1-bn={(n+1)2-2(n+1)-1}-(n2-2n-1) =2n-1 となるね。 Y : ということは, 隣り合う数の差が必ず奇数だからBは 偶数から始まって偶数と奇数が交互に現れるね。 だけ ど,これだけではまだ特徴がわからないな。 X : そうしたら次はもう1つ離れた数との差をとってみよ うよ。 (n+2) 番目の数からn番目の数を引いてみよう。 Y: bn+2 -b を計算するとイ となるね。 X : わかった。 これと今までわかっている特徴を合わせる と問題が解けるね。 (1) ア イにあてはまる式や値を答えよ。 (2) Bの数の列において, 2023が何番目か求めよ。 (3) Cの数の列において, 2023が何番目か求めよ。 問題↓解説↑ 3 (1)(イ) bn+2=(n+2)-2(n+2)-1 =n2+2n-1より, bn+2-6m=n2+2n-1- (n2-2n - 1) = 4n (2) n2-2n-1=2023 (n+44)(n-46) = 0 n>0より, n = 46 (3)4n5= 2023 n= ¥507 より, Aの列において, 2023は507番目の数である。 Cの数の列において 2023までの数の個数は, A の数の 列における 2023 までの数の個数と、Bの数の列における 2023 までの数の個数の和からAの数の列とBの数の列に 共通する2023 を含めた数の個数を引けばよい。 A の数の 列とBの数の列に共通する数の列Dを書き並べると, D: -1, 7,23,47, ...... DはBの偶数番目の数が並んでいるから, n番目の数を dn とすると, dn=bzn=(2n)2-2 × 2n-1=4n²-4n-1 4n²-4n-1=2023 n2-n-506 = 0 >0より, n=23 (n+22) (n-23) = 0 よって, Cの数の列において, 2023 は, |507 +46-23530 ( 番目)

未解決 回答数: 0
1/14