学年

教科

質問の種類

数学 中学生

教えてくださると幸いです♪

☆愛知県入試にチャレンジ! 文字式の複合問題] 問題3 次の文章中の1にあてはまる式を. れぞれ一つずつ選びなさい。 1から9までの9個の数字から異なる3個の数字を選び, 3けたの整数をつくるとき、つくることができる 整数のうち、1番大きい数をA,1番小さい数をBとする。例えば、2,47を選んだときは,A-742. B=247 となる。 A-B=396となる3個の数字の選び方が全部で何通りあるかを、次のように考えた。 選んだ3個の数字を. a,b,c(a>b>c)とするとき, A-Bをa,b,c を使って表すと, I となる。 この式を利用することにより, A-B=396となる3個の数字の選び方は、全部で 通りであることが わかる。 Iの選択肢・・・ア 9 (a-c) Ⅱの選択肢・・・ア 5 イ 11 (a-c) 19 Aの選択肢・・・ア 2 +12 a,b.c の選択肢・・・ア 2 にあてはまる数を、あとのアからエまでの中からそ OSOND ③3 I... A = 100g+106+c. B=100c+106+②のとき, A-B=994-99c=99(a-c) よって, ウ。 Ⅱ・・・ 396=99×4だから, a-c=4となり、αとcの組み合わせは (9, 5). (84) (73) (62) (51) の5通り。 a=9c=5のときあてはまるは 8,7,6の3通りあり。 他の組み合わせについても同様に3通りずつあるので、 全部で3×5=15 (通り) よって, ウ。 類題演習 次の文章は、体育の授業でサッカーのペナルティキックの練習を行ったときの、1人の生徒がシュートを入 れた本数とそれぞれの人数について述べたものである。 文章中の A にあてはまる式を. a b C ]にあてはまる自然数を,あとのアからオまでの中からそれぞれ一つずつ選びなさい。 なお、3か所 の A には、 同じ式があてはまる。 1 0 0 1 -2y+12 イ 3 99(a-c) ウ 15 下の表は,1人の生徒がシュートを入れた本数とそれぞれの人数をまとめたものである。 ただし、すべての 生徒がシュートを入れた本数の合計は120本であり、シュートを入れた本数の最順値は6本である。 また、表 の中のx,yは自然数である。 000 8 9 10 シュートを入れた本数(本) 人数(人) 2 3 4 5 6 7 1 2 20 3 2 V 2 1 1 すべての生徒がシュートを入れた本数の合計が120本であることから、をを用いて表すと、 x=Aである。xとりが自然数であることから、Aにあてはまるxとyの値の組は全部 で I 121(a-c) I 20 0 0 組である。 x=Aにあてはまるxとvの値の組とシュートを入れた本数の最頻値が6本であることをあわせて考 えることで,x= by c であることがわかる。 ウy+6 ウ 4 0 0 0 ☺ ☺ ☺ ☺ I -y+6 I 5 b0 0 0 0 0 19 24 126 14.74 12 46 オ +12 TF 34 37 0 0 0 0 0 オ 6 C6 0 0 0 0 数学

回答募集中 回答数: 0
数学 中学生

ここの赤でしるしした所が理解出来ず、20分ほど頭を抱えました。何故このようになることを教えてくださいm(*_ _)m

π ておくこと。 とした問題をしっかりマスターしておくこと。 右の図で は のグラフである。2 B との交点であり、Aの (52),B(52)である。 また、点Cは軸上に (0.7)である。 2点A, C あり、その n原点を として、次の問いに答えなさい。 それぞれ求めなさい。 を求めなさい。 のグラフ、は y=ax 上に2点P, を、 四角形APBQが平行四辺形となるようにとる。 平行四辺形APBQ OACの面積が等しくなるとき。 点Pの座標を求めなさい。 ただし、点Pの 座標は正の数とする。 5 右の図のように、4点(0,0),(0, 12), 1(-8, 1), C-8,8を頂点とする長方形と直線があり、の傾きであ る。このとき、 次の問いに答えなさい。 (9点×3) 直線が点Cをるときの切片を求めなさい。 (2) BCと直線との交点をPとし、Pの座標を1とする。 また、が辺OA または辺AB と交わる点をQとし、200Pの面積をSとする。 ④点Qが遊上にあるとき, Stの式で表しなさい。 (S-30 となる1の値をすべて求めなさい。 A ミント 日より、次において のときとなる。 OD (r<6)上にあり、OAC-DAP となる点である。 える。 3 平行四辺形 APRO APQ+ABQP である。 000 vas 13 14 max 12 x-by=2&RALT, 2-5p+7 pal 21.CO DOT, e して 5.2 を代入すると (3) AC ×7×5 ここで、点Pの座標とすると閉 12-20. PQ-/-(-1)-2 THE APBO ORIZ AAPQ+ABQP -xarx5+2x5-10 麺 (1)直線はさが尋なので、式は、 CORE. C(- 0) 1. x=8y=0&CA 0-2x(~8+64=6+6 6-6 (2①)の標とすると。 PC-8. なので、この増加量が (-8)-8のときのものをとすると、 よって、点の座標は、+6 400P-X00x002). S=X(+6)x8 -4(+6)=4F+34 3041+24-612/2 上にあるとき。 05 (0)より。 QADILAGES. BP-BC-CP-11- 1-1025 の増加をすると、 ----- まって AG-2-(18-11)--+ | ADOP-ABCO-(ADAQ+40CP+ABPQ) 5-128-1-(-*+1}x+{**** ²+4+48 とき +4×(1-1)×(12-0) +428-306 (2-9)(1+3)-0 1-9, -3 65/12 21. 7-9 方のコマ 図形問題の場合分け のような問題では、条件に合う場合が つであるとは限らない。 実際にかき込んで ・5 関数 x ■ (1) μ=8 (2)g=1 (3)=-1, グラフは下の (4) ア。 エ Hffffiff 2 (14) 2p.12-p13

未解決 回答数: 1