学年

教科

質問の種類

数学 中学生

⑶がわからないので、解説をお願いします

は、 p.87 身の前 ました。 →午前10時13分 の道のりは -300=700(m) =1000 線となる。 時間との と弟は、自宅から 750m離れた中学校まで 同じ通学路で通っています。 ある朝、 姉は自宅 から学校へ歩いて行く途中で忘れ物に気づき 自宅へ走って帰り、忘れ物をさがしたあと、 同じ速さで走って学校へ向かいました。 姉が最初に自宅を出発してからæ分後の自宅 からの道のりをymとしてとの関係を グラフに表すと、次の図のようになりました。 750円 500 忘れ物に気づく 300 250 自宅で さがす 5 6 8 10 12 15 17 20 (1) 姉が忘れ物に気づいたのは, A step.C ななみさんは写真を印刷してポストカード をつくるため、印刷料金を調べ、次のように まとめました。 印刷料金は、 基本料金に、印刷する枚数分の プリント代をだしたものです。 基本料金 1枚ごとのプリント代 A社 1500円 50円 B社 2500円 30円 印刷料金を安くするには. A社, B社のどちらを 選べばよいのかな。 枚印刷するときの印刷料金を円として 次の問いに答えなさい。 (1) A社とB社について、 それぞれとyの関係を式に表しなさい。 ただし、変域は考えないものとします。 y=50x+1500 y=30x+2500 最初に自宅を出発してから何分後ですか。 A社 16分後 B社 (2) 姉の走る速さは分速何m ですか。 300 =150 8-6 (2)A社とB社について、それぞれとりの 関係を表すグラフをかきなさい。 分速 150m CHECK y 5000 姉が走ったのは,自宅を出発してから6分後から 8分後までの2分間と, 12分後から17分後まで の5分間。 4000 B社 3000 -2000 別解 A社 -1000 750 =150 17-12 0 10 20 30 40 50 60 (3)姉は,自宅へ走って帰りはじめてから 1分後に弟とすれちがいましたが, 弟と同時に学校に着きました。 姉が自宅を出発してから7分後 弟の歩く速さは一定であるとすると 弟の歩く速さは分速何mですか。 750-150_600 ・姉が自宅を出発してから 17分後 17-7 10 =60 60m CHECK 弟は、姉が自宅を出発してから7分後に自宅から150m の地点, 17分後に自宅から700 (3)印刷料金を安くするには, A社, B社 どのように選べばよいですか。 説明しなさい。 記述 [説明] 印刷枚数が(例) 50枚。 ときはA社, 50枚より B社を選べばよい。 ちょうど50枚買うと

未解決 回答数: 0
数学 中学生

2番の⑵と⑶の解説をお願いします

step.A 時間と いとさんに して、途中 まで行き いとさ/ 分の家: とりの の図の 点 34 一次関数 p.86-p.87 step.AC 9.86 れいとさんは、午前10時に自分の家を出発 して、途中にある図書館で本を借りてから、 駅まで行きました。 れいとさんが家を出発してから分後に、 自分の家からmの地点にいるとして、 との関係をグラフに表すと、 次の図のようになりました。 C地点・・・ 1000] 駅 点・ 図書館 B地点 600 500 300+ A地点 0 3 5 10 15 家 (午前10時) IC 2時間と道のり p.801 において, れいとさんの弟は、 午前10時8分に駅を出発して、図書館の前 を通って歩いて家まで帰ることにしました。 7 Alim 弟は、駅を出発してから5分後に、 駅から300m離れた花屋の前を通りました。 午前10時1 弟の歩く速さは一定であると考えて 次の問いに答えなさい。 (1)弟が図書館まで進んだとして 弟が進むようすを表すグラフを, P801 の図にかき入れなさい。 「家からの道のりは 1000-300-700 午前10時8分に駅にいるz=8のときg=1000 午前10時13分に花屋の前にいる x=13のとき=700 図書館はれいとさんの家から600mの地点に よって 2点 (8,1000). (13.700) を通る直線となる。 あるので, グラフの変域は, 6001000 1 姉と弟 同じ通 から 自宅へ 再び 姉が から グラ 75 3 (1) (1) れいとさんの家から図書館までの 道のりは何ですか。 図書館にいた間は、進んだ道のりは変わらない。 グラフで、xの値が変化しても 図書館の位置である。 の値が一定のB地点が 600m (2) れいさんが自分の家を出発してから 3分後にいる地点から, 駅までの道のり は何ですか。 →x = 3 =3のときのの値を読みとると. y=300 家から駅までは1000mなので 1000-300-700 (3) れいとさんが上のグラフの B地点とC地点の間にいるときの, 700m (2)についてとの関係を式に表しなさい。 ただ変域は考えないものとします。 グラフは、右へ進むと下へ300進むから、 -300 5 傾きは, = 60 求める一次関数の式を,y=-60x+b とすると、この直線は,点(8, 1000)を 通るから, 1000=-60×8+b b=1480 y=-60x+1480 (3) れいさんと弟がすれちがったのは 午前何時何分ですか。 また、 れいとさんの家から何mの地点ですか。 xとyの関係を, xの変域をつけて 式に表しなさい。 グラフは、右へ進むと上へ400進むから, 400=80 一傾きは, 5 求める一次関数の式を, y=80x+b とすると、この直線は,点(10,600)を 通るから, 600=80×10+b | y=80x-200 ......① y=-60x+1480 ...... 2 ①を②に代入すると, 80x-200=-60x+1480 140x=1680 x=12 x=12を①に代入すると, 時刻 y=80x12-200=760 午前 10 時12分 b=-200 y=80x-200 (10≦x≦15) 地点 れいとさんの家から760mの地点

未解決 回答数: 1