学年

教科

質問の種類

国語 中学生

答えがなくて困っています。 このテキストの6-9、14-17、18-21の答えがあったり分かったりすれば教えて欲しいです。

17 下一段・下二段 150 50 堪へ (3) (1) 動詞 ③ 16 ①まう 文献にも このようなことは、 かうし 2 反復学習で確認 1 次の傍線部①~⑤の動詞について、それぞれの活用の行種類と活用 書きなさい。 (こよなくやつれてのみこそ詣づと知りたれ。 この上なく粗末な格好で参詣するものだと(私は)知っている。 (かかることは、文にも見えず、 ③ 格子など上ぐるに見いだしたれば、 2 3点×3 (2) 〔枕〕 3 次の傍線部①~⑧のうち、下二段活用の動詞を四つ選んで番号を書き、 かつ活用の行と活用形を書きなさい。 [徒然] 〔徒然〕 蓮を 1 家にはちすを植ゑて愛せし時の楽なり。 → 賞玩した時に作った楽曲である。 〔方丈〕 〔蜻蛉〕 (1) 人数を知らんとて、四五両月を数へたりければ、 数えたところ、 亡くなった人の数を知ろうとして、 [方丈〕 〔宇治拾遺〕 さいしゅう 音に聞きめでてまどふ。 上げるので、外を見いだしたところ、 すまひ 4蹴よといひつる相撲に 蹴れと いった かぐや姫のうわさを聞いて恋い慕い、心を乱す。 積もり 消ゆる様、罪障にたとへつべし。 〔竹取〕 (4) (3) (雪が積もったり消えたりする様は、きっと人の(犯す)罪障にたとえられるだろう。 (竹取) 綱を引きすぐして網絶ゆるすなはちに、 なくなった瞬間に、 引っ張りすぎて 番号 活用の行 活用形 番号 活用の行 活用形 ● ラ行下二段活用・連用形 行 活用 形 形 サ行 終止 形 行 形 ② 活用 行 3 活用 行 行 行 形 行 形 ④ 行 形⑤ 活用 形 34点×4 行 活用 2 次の〔内の動詞は下一段、または下二段活用動詞ですが、いずれも 終止形で示しています。 それぞれを適切に活用させて書きなさい。 例 下よりきざしつはるに〔堪らずして落つるなり。 5×5 活用の種類や行が紛れやすい OKKEN すい (第2 下二段活用の動詞 〔徒然〕 う こころう ところう ま ま ま 木の下(内部)から兆しが芽ぐんでくるのに堪えられないで(木の葉が) ア行―得・心得・所得(三語) ザ行(交雑)ず(一語) だいこくでん 1 大極殿に行きてこれを〔ける]。 〔古今著聞〕 かな ひい うれ 大極殿に これを ダ行出づ奏づ・秀づ ハ行与ふ・憂ふ・数ふC かな さ ( しばし〔奏づ〕て後、抜かんとするに、おほかた抜かれず。 〔徒然〕 ヤ行ー甘ゆ・覚ゆ・消ゆ・聞こゆ・越ゆ・冴ゆ・萌ゆ・見ゆ 演じた後で、(鼎を頭から)抜こうとすると、 全く かなえ う う (3) ③ [飢う]ず、寒からず、風雨にをかされずして、徒然 ワ行ー植う・飢(餓)う・据う(三語) 飢えることなく、寒くなく、 冒されることもなく、 tintetise( 3 文章問題で定着 50 50 ※ ●語注 どこでもよい、 しばらくの間 いづくにもあれ、しばし旅立ちたるこそ、目さむる心地すれ。そのわたり、ここかしこ見ありき、田舎びたる 目がさめるような(新鮮な)気持ちがする。そのあたり、 見てまわり、 見慣れないことばかりが 多い。 所、山里などは、いと目馴れぬことのみぞ多かる。都へ便り求めてやる。 「そのこと、かのこと、便宜に忘るな。 ふみ ※びんぎ つてを求めて (その手紙に 都合のよい時に忘れるな。」 などと言い送るのは おもしろい。 そのような旅先でこそ、 など言ひやるこそをかしけれ。さやうの所にてこそ、よろづに心づかひせらるれ。持てる調度まで、よきはよく、 何事につけても自然と心遣いがされるものだ。 持っている道具類まで、 芸能のできる人や容貌のよい 能ある人、かたちよき人も、常よりはをかしとこそ見ゆれ。 P 36 ° いつもよりは興趣深く 見えるものだ。 〔徒然草・一五〕 KG 問 次の語はすべて下二段活用の動詞です。 活用表を完成させなさい。 基本形語幹行 未然形 連用形 終止形 連体形 已然形 命令形 萌ゆ ※いづくにもあれ「あれ」はラ 変動詞の命令形。 命令形の許 容・放任の用法。 ※便宜─「べんぎ」ではなく「び んぎ」と読む。都合のよい時・よ い機会、便り・手紙などの意。 能ある人ここは、芸事の能 力がある人の意。 問二 二重傍線部①~⑤の動詞について、活用の行・種類と、文中での活 用形を答えなさい。 おと ①さむる ②目馴れ ③求め ④忘る ⑤見ゆれ ふ う 失す ひい 秀づ ⑤ ③ ① さだ 定む に 逃ぐ ( 46 問三 読む 右の文章における作者の主張が最も端的に表れた一文を抜き出 して、その最初の五字を書きなさい。 6点

未解決 回答数: 0
国語 中学生

この問題の、最後の部分のまとめ方がわからないです😭どなたか教えていただけると幸いです😭59の2番です!

581 1 1 (4k-3)(4k+1) = 4k-3 p.2683/ 4k+1 が成り立つことを利用し を求めよ。 k=1 (4k-3)(4k+1) 59 次の和 Sm を求めよ。 .27 問34 (1) S=1.1 + 2・3 + 3・3 +4 (2S=1.r +32 +5 +7 +・・・+n・3n-1 +・・・+(n-1)." (r1) 60"自然数の列を次のような群に分け, 第n群には (2n-1) 個の数が入る 28 35 る。 12, 3, 4 | 5, 6, 7, 8, 9 ... (1) 第群の最初の項を求めよ。 ② 第 (2)/第n群のすべての項の和 + (4n-3)(4n+1) -)+(-) 1 4n 3 4n+1 I)} n in+1 a b + -3 4k+1 うと k-3) e+(a-3b) 式であるから, (2n-1)r" ... ① (2) Sm=1r +32 +53 +7p+・・・ ①の両辺にを掛けて rSm=1·r2+3.3 +5・ra + ・・・ とする。 ①から② を引いて + (2n-3)r" + (2n-1)rn+1 2 J (1-r)Sn =r+2re +2.3 + ORI +2.r"-(2n-1)rn+1 =r+2r2(1+r+re++rn-2) 1であるから 08 -(2n-1)+1 1+r+r² + ··· + p² - 2 1-(1-1) 1-r 1+3+5 + + (2n- (n-1){1+(2n-3) ゆえに、第群の最初の項 列{(-1P+1)番目であ すなわち、第群の最初の (n-1)^2+1=㎡-2 これは、n=1のときも成 ゆえに n²-2n+2 (2)第群は初項²-2x+ 項数2n-1の等差数列であ 和は (2n-1)(2(n-2n+2)+ = (2n-1)(n-n+1) 61 (1) k (k+2)- = k+2 k(k+1 より (1-r)Sn 1-r1 (2 (2n-1)n+1 =r+2r2. 1-r r(1-r)+2r2(1-r"-1)(2n-1)r"+l(1-r) 1-r (2n-1)rn+(2n+1)rn+1 +2 +r 1=r であるから 2 = k(k+2 k(k+2) が成り立つ。これを利用 2 2 2 + + + 1.3 2.4 3.5 = - 1-1/2)+(1/-/1/1) 4 4 = 4k+1 1 4k+1. 3+... したがって -1... D Sn= (2n-1)r"+2-(2n+1)r"+1+r2+r (1-r)2 60 (1) 1/2, 3, 4/5, 6, 7, 8, 9・・・ +(1/-/1/1) + (ザーデ)+ 各群に含まれる自然数の個数は 1 1 =1+ 2 n+1 n+

未解決 回答数: 1
1/49