數學 高中 大約一小時以前 看不太懂詳解的解法 有大神可以幫我解釋嗎🥹? 共7 頁 3. 小明的冰箱中有3顆相同的巧克力及3個相同的布丁,共6個點心。小明決定在下星期五 天內(星期一到星期五)把點心吃完,從星期一起每天至少吃一個點心,直到冰箱内的巧克 力及布丁吃完為止。星期一的第一個點心從冰箱隨機選擇一個點心,吃完後,小明接著再 隨機選下一個點心,可繼續吃或等到隔天第一個吃,若選擇隔天再吃,當日就不再吃點心, 剩下的點心都採用這個原則;不過,若星期五當天如果還有點心剩下兩個以上,則吃完第一 個點心後,剩下的隨機一個一個依序吃完。 例如:三天吃完→ 巧布巧 布 布巧,或五天吃完→ 巧 巧 布 布 布巧。根據這個 原則,小明點心吃完不同的順序方法有幾種? (2)31種 (2)32種 天 (3)160種 ②天 (4)620種 (5) 640種 待回答 回答數: 0
數學 高中 1天以前 看不懂題目😓(要從哪裡看 二戰時期會使用測距儀來測量敵機目前的距離,藉此提高擊落敵機的機會。下圖一為測距儀的 1 其也對準敵機,如下圖二所示。已知P點、Q點相距1.5公尺且ZRPQ=90°,試回答下列問題: [ 圖片,透過觀測孔可以從P點、Q點看到敵機,將P點準確對準敵機後,再調整Q點的角度使 R點 P 點 觀測孔 2點 圖一 1. 下列哪個角度觀測到的敵機距離觀測員最遠? P 點 1.5 2點 PIS 圖二 (1)∠PQR=89.1° (2)∠PQR=89.2° (3)∠PQR=89.3° (4)∠PQR=89.4° (5)<PQR=89.5° 【解 公尺。 尚未解決 回答數: 1
數學 高中 2天以前 我想請問第三個選項為什麼是對的? 112年分科 數學甲考科 請記得在答題卷簽名欄位以正楷簽全名 第4頁 共7 頁 2.3 S. 複數平面上,設三代表複數的共軛複數,且i=V-I。試選出正確的選項。 (十)若==2i,則 = = 4- (2) 若非零複數∝滿足a=4iā,則|a|=2 (3) 若非零複數∝滿足a=4iā且令B=ia,則B = 4ip (4) 滿足 = = 4的所有非零複數中,其主角的最小可能值為 (5) 恰有3個相異非零複數=滿足==4 (3) B=1%(x)三千万 -i·4iα=4itiα) -4x+4x 已解決 回答數: 1
數學 高中 4天以前 不懂為什麼第三個選項可以這樣寫,是如果機率相同就可以這樣寫他們的關係式嗎? 以下附上答案題目與解析謝謝。 5. 袋中有大小相同,編號1到7號的球各1球。小昱自袋中隨機一次取出三 球,每顆球被取出的機率均等。設隨機變數 X 為取出三球中的最大號碼,隨 機變數Y為取出三球中的最小號碼,請選出正確的選項。 3 (1)P(X=4)= 35 (3)Y=-X+8 (5)Var(X)=Var(Y) (2)P(X=5)=P(Y=3) (4)E(X)=E(Y) 數 15 天 已解決 回答數: 1
數學 高中 4天以前 我想問這題怎麼算 [a₁x+by+c₁z = 0 6 三元一次聯立方程式: ax+by+cz=0有一組解(1,2,3),且 lagx+by+cgz=0 [ax+by+c₁z=d₁ 三元一次聯立方程式: azx+bzy+czz=d(d、d、d,為實數且不全為0) lagx+by+cgz=d, 有一組解(1,3,5),則三元一次聯立方程式,必定也有以下哪幾組解? (1)(0,0,0) 【解 (2)(2,5,8) (3)(0,1,2) (4)(1.4) (5) (0,-1,-2) · 待回答 回答數: 0
數學 高中 4天以前 問D選項 (1)下列那些是9的倍數? (A)247023846 (D)986 2 3 + 814 (B)645×7329 90 (E) 10 +1 (C) 3101 答:(A)(B)(C)(D) 已解決 回答數: 1
數學 高中 5天以前 這是高二上的向量問題 這兩題都是用座標去解 第四題我使用斜座標系去求沒有問題 但是第三題我也用斜座標系去求反而與解答用普通方法去設座標有出路 請問為什麼 152 第3章 平面向量 3. 等腰梯形ABCD 的上底長度為4D=5,腰長為4,兩個底角的 大小為∠B=∠C=匹,求AC.BD=29 求AC. BD=29039 3 B(90), A(0.4). C(9.2, D(5,4) AC (9,-4), BD (5,4) M· BD = 45-16 4. 平行四邊形ABCD,已知AB=4,BC=3,求AC.BD= QUA A D C 77° B A(6,0), B(4.0) c (4.3), D(013) [(93)、(43) 1 4 A 5 D 4 B 02 【小小叮嚀 直接算不容易,貼坐 標就方便多了 解題妙招 圖形未定,可利用特 例來速解 C 尚未解決 回答數: 2
數學 高中 6天以前 想請教這題: 為什麼包含中點M的平面MAB就可平分四面體ABCD? 我的疑惑點是它並非正四面體, 因此平分的MC與MD不是高, 以MAB為共用底, 如何知道D,C對平面MAB的距離是等長? -例13:平分四面體 空間中四點 4(−3,1,2)、B(-1,4,3)、C(2,1,4)、D(-2,5,0), 求包含4B且平分四面體ABCD體積的平面方程式 《答》 2x-3y+5z=1 C+D 《解》CD的中點 M= =(0,3,2) 2 所求為通過A,B,M的平面方程式 E ① 點M(0,3,2) ② 法向量 N=ABxm =(2,3,1)x(3,2,0) =(-2,3,-5)=(2,-3,5) ...E:2x-3y+5z=1 D. B 已解決 回答數: 1
數學 高中 7天以前 求解🙏🏻 回 阿悟想測量操場上某旗桿的高度(旗桿與地面是垂直的)。他先在旗桿的正西方4點處測得 「桿頂的仰角45°,然後在旗桿的西30°南的B點處測得桿頂的仰角為60°。設AB=20公尺, 旗桿頂點為C,地面上桿底為D,試回答下列問題: (1)設CD=h,則BD= h 1 (2 ③h ④√3h ⑤2h 公尺。 2 √3 (2)旗桿長 CD = 205公尺。 答 孙 45 【家齊高中】 10 B B 尚未解決 回答數: 1