數學 高中 1天以前 想請問這題(排組) 謝謝🙏 7. 如右圖,房間地板每小格皆為1X1的正方形磁磚,若欲將一塊2×1的 矩形灰色磁磚 替換地板上的兩相鄰正方形(直放或橫放皆可),則 有 種方法。 已解決 回答數: 1
數學 高中 1天以前 我一直覺得(3)不對 外積不是長長sin θ 嗎? 意思是永遠是非負的值 那z1x共軛z2就不會小於0啊🤯 解答我可以看懂 想請問我的想法為什麼不對 actbd=-1 a+b=1 主題 38 複數與複數平面 2482 => 0=120° 240° C05日 = -2 6 設a,b,c,d為實數,向量=(a,b)=(c,d)滿足| |=1,21=2且 .描述相同 D:D2=-1,則關於複數z=a+bi與zn=c+di的敘述,請選出正確的選項。(多選) ||||- | 2×2 = 2 + 12 ||7| s (1)|z|=1 (4)/zy+zzl=v3 11200 0-1200 (5)|21-221 = √ 963)/2, Z2 181/Z2|sin 1.4.18-(-82) | Na+ c²+za+b+/+2bd 3. ((a+c) + (bd)i| 15-23 Z2 01(1-1 sin Ai 120' 已解決 回答數: 1
數學 高中 1天以前 想請問為什麼11題我鉛筆的解法不行 (柯西求min) 答案算出來是2-√2 ☉9~11題為題組 (4.3)P 0762 複數平面上,試回答下列問題。 0(4-3) S 9.若點P所代表的複數為z,點所代表的複數為一ㄥ,則P與Q兩點在坐標平面上會 對稱於下列何者?(單選 2.(1)x軸 (4)直線 x=y (2)y軸 (5)直線 x=y 10.若複數z滿足z+Z=4且|z|=2/2,試求複數 z。 8-1-1+12 若複數z滿足|z+Z=4,試求|z+1-1的最小值。 a+bi. 10. z=(a+bi) (3)原點(OO) • (a, b) 11, 12/+12/+22+ 7 = 16. Ab²+b²)=164 a²+b²=4. (a+b)(2²+(-2))>(20-26) a+b+a+b=4 7762±zi) Z=a+bica.beR). a=2 2 2 a+b² = 8 62±2 H 6-258 2-52 √(a+1 3+ (b−1)²+ 2. a+za+1+2+1 2a-2b+6 = -452+6 4.8 47229-267-4e 已解決 回答數: 1
數學 高中 2天以前 想問E選項第二次為什麼跟第一次抽中白球的機率一樣 答得0分,共20分 3. LABE 袋中有3個紅球,7個白球,假設每球被取到的機會均等,今自袋中隨機取球,則下 列哪些選項是正確的? 3 ④只取一球,取到紅球的機率為 3x7 10 = (B)一次取兩球,只取一次,恰為一紅球一白球的機率為 15 7 Co (C)一次取一球,取後放回,共取兩次,恰為一紅一白球的機率為 (D)一次取一球,取後不放回,共取兩次,恰為一紅球一白球的機率為 3)一次取一球,取後不放回,則第二次取到白球的機率為 26P(第二次)=P(第一次)=10 109 8-1 7 10 21 100 7 30 3 10 ㄨ 10 ㄨˇ 1.1. 10910 Go x2 10 30 尚未解決 回答數: 1
數學 高中 3天以前 求解🙏🏻 6、設 0°<<90°,若tan8+ 1 25 sin cos 0 = tan 12 1-25000030 #tang²+ 25 = tang 4 -3 3 -4 12tang+12=25 tan 12tang-25 tano +12-0 (4tane-3) 13tan 9-4)=0 > 1- tan 9 = 3√ 4 = Sing 尚未解決 回答數: 2
數學 高中 5天以前 想請教這題: 為什麼包含中點M的平面MAB就可平分四面體ABCD? 我的疑惑點是它並非正四面體, 因此平分的MC與MD不是高, 以MAB為共用底, 如何知道D,C對平面MAB的距離是等長? -例13:平分四面體 空間中四點 4(−3,1,2)、B(-1,4,3)、C(2,1,4)、D(-2,5,0), 求包含4B且平分四面體ABCD體積的平面方程式 《答》 2x-3y+5z=1 C+D 《解》CD的中點 M= =(0,3,2) 2 所求為通過A,B,M的平面方程式 E ① 點M(0,3,2) ② 法向量 N=ABxm =(2,3,1)x(3,2,0) =(-2,3,-5)=(2,-3,5) ...E:2x-3y+5z=1 D. B 已解決 回答數: 1
數學 高中 6天以前 請教這題🙏 匡起來的部分不懂😵💫 4 袋中有3個白球,4個紅球,5個黑球,每球被取 | 中的機會均等。今自袋中每次取出一球,取後不 放回,共取三次,試求 (1)第一次取到黑球的條件下,三次恰有兩次取 到黑球的機率。 (2)第一次取到黑球的條件下,三次取到的球都 解: 不同色的機率。 A:第一次取到黑球P(A)=1/2 B:三次中恰有2次取到黑体P(AMB), C:三次取出之球都不同色 5里取1 5×2×4×17 12: (12-3)! 5x2x47 12x11x102 袋中有10顆球,其中有 的機會均等。從袋中逐 後又放回袋中,在已知 求第一次與第四次均招 解: 放红 A:抽 P(A)= P(MB) Pl P(ANC)= V 34 P₁₁ 3 513x4x2 +2+11x78 P(BIA) = 33=28 紅糖頭 15 55 1 2!! 33 P(CIA)= 3/9/=4 Elt 55 尚未解決 回答數: 1
數學 高中 6天以前 請教這題🙏 不太懂 類題 (2.1)(2.2) (2) (4,11 (4,6) (6.1). 16.67 36 5 36 n(ANB) 2 H(A) 丟擲一公正的硬幣4次,求出現3次正面的條件下,第三次出現正面的機率。留 A:出現了次正面n(A)=4 正正正反之排法ㄓㄨㄥˇ= 41 4 P(MB) P(BIA)- (A) = 4 M/+ 。 尚未解決 回答數: 1
數學 高中 7天以前 這兩題怎麼算啊⋯ (1)設 x = √2-1 √2+1 , 求x² + 3 1 3. 72+182-1 (2)已知x= -1+√3 2 2 , ' y=' x -1-3 , 則x²+y' 的值為 2 尚未解決 回答數: 1
數學 高中 7天以前 請問為什麼第五個選項答案是32Q2(1)=247/2,可是我怎麼算都是509/16?(我想知道我哪裡算錯了,謝謝) I (23) 7 已知x*除以x ㄚˇ ·的商為Q(x),餘式為,9,(x)除以x. 2 2 的商為 01-12 Q:(x),餘式為,請選出正確的選項。 Q1.1843x+4年...赵+3 (1)=256或 7 255x-46 (x) = ** =32Q2(1) X32160 (3)Q 510 (4) 12= 1616 509 1 16 = 1 32 2* 1+0+0+0+0+0+0+0+01 1/2 t Q1=(x-Q2+2 (5)Q(5)=2=6 1(153) (5)32Q:(1)=123 163202(1) Q(1): 8項 Q₁ ( 5 ) = 8 × (517) = 12/18 = 16 510 255 = 256X2255 = 大 已解決 回答數: 1