數學 高中 14天以前 想請問為什麼11題我鉛筆的解法不行 (柯西求min) 答案算出來是2-√2 ☉9~11題為題組 (4.3)P 0762 複數平面上,試回答下列問題。 0(4-3) S 9.若點P所代表的複數為z,點所代表的複數為一ㄥ,則P與Q兩點在坐標平面上會 對稱於下列何者?(單選 2.(1)x軸 (4)直線 x=y (2)y軸 (5)直線 x=y 10.若複數z滿足z+Z=4且|z|=2/2,試求複數 z。 8-1-1+12 若複數z滿足|z+Z=4,試求|z+1-1的最小值。 a+bi. 10. z=(a+bi) (3)原點(OO) • (a, b) 11, 12/+12/+22+ 7 = 16. Ab²+b²)=164 a²+b²=4. (a+b)(2²+(-2))>(20-26) a+b+a+b=4 7762±zi) Z=a+bica.beR). a=2 2 2 a+b² = 8 62±2 H 6-258 2-52 √(a+1 3+ (b−1)²+ 2. a+za+1+2+1 2a-2b+6 = -452+6 4.8 47229-267-4e 已解決 回答數: 1
數學 高中 14天以前 不懂為什麼第三個選項可以這樣寫,是如果機率相同就可以這樣寫他們的關係式嗎? 以下附上答案題目與解析謝謝。 5. 袋中有大小相同,編號1到7號的球各1球。小昱自袋中隨機一次取出三 球,每顆球被取出的機率均等。設隨機變數 X 為取出三球中的最大號碼,隨 機變數Y為取出三球中的最小號碼,請選出正確的選項。 3 (1)P(X=4)= 35 (3)Y=-X+8 (5)Var(X)=Var(Y) (2)P(X=5)=P(Y=3) (4)E(X)=E(Y) 數 15 天 已解決 回答數: 1
數學 高中 14天以前 問D選項 (1)下列那些是9的倍數? (A)247023846 (D)986 2 3 + 814 (B)645×7329 90 (E) 10 +1 (C) 3101 答:(A)(B)(C)(D) 已解決 回答數: 1
數學 高中 14天以前 想問E選項第二次為什麼跟第一次抽中白球的機率一樣 答得0分,共20分 3. LABE 袋中有3個紅球,7個白球,假設每球被取到的機會均等,今自袋中隨機取球,則下 列哪些選項是正確的? 3 ④只取一球,取到紅球的機率為 3x7 10 = (B)一次取兩球,只取一次,恰為一紅球一白球的機率為 15 7 Co (C)一次取一球,取後放回,共取兩次,恰為一紅一白球的機率為 (D)一次取一球,取後不放回,共取兩次,恰為一紅球一白球的機率為 3)一次取一球,取後不放回,則第二次取到白球的機率為 26P(第二次)=P(第一次)=10 109 8-1 7 10 21 100 7 30 3 10 ㄨ 10 ㄨˇ 1.1. 10910 Go x2 10 30 已解決 回答數: 1
數學 高中 15天以前 求解🙏🏻 6、設 0°<<90°,若tan8+ 1 25 sin cos 0 = tan 12 1-25000030 #tang²+ 25 = tang 4 -3 3 -4 12tang+12=25 tan 12tang-25 tano +12-0 (4tane-3) 13tan 9-4)=0 > 1- tan 9 = 3√ 4 = Sing 尚未解決 回答數: 2
數學 高中 15天以前 這是高二上的向量問題 這兩題都是用座標去解 第四題我使用斜座標系去求沒有問題 但是第三題我也用斜座標系去求反而與解答用普通方法去設座標有出路 請問為什麼 152 第3章 平面向量 3. 等腰梯形ABCD 的上底長度為4D=5,腰長為4,兩個底角的 大小為∠B=∠C=匹,求AC.BD=29 求AC. BD=29039 3 B(90), A(0.4). C(9.2, D(5,4) AC (9,-4), BD (5,4) M· BD = 45-16 4. 平行四邊形ABCD,已知AB=4,BC=3,求AC.BD= QUA A D C 77° B A(6,0), B(4.0) c (4.3), D(013) [(93)、(43) 1 4 A 5 D 4 B 02 【小小叮嚀 直接算不容易,貼坐 標就方便多了 解題妙招 圖形未定,可利用特 例來速解 C 尚未解決 回答數: 2
數學 高中 16天以前 詳解寫得太簡了🥹 有大神可以幫我說明一下嗎🙏🏻 8.在坐標平面上,已知a, 下所張成的三角形面積為5, 6, 所張成的平行四邊形面 積為20,若x+yh=c,則正數x= 18 8Z.. 12x61 - $10. |12|\-sinv|- 16x1=20 10. [holl i sin betw 已解決 回答數: 1
數學 高中 17天以前 想請教這題: 為什麼包含中點M的平面MAB就可平分四面體ABCD? 我的疑惑點是它並非正四面體, 因此平分的MC與MD不是高, 以MAB為共用底, 如何知道D,C對平面MAB的距離是等長? -例13:平分四面體 空間中四點 4(−3,1,2)、B(-1,4,3)、C(2,1,4)、D(-2,5,0), 求包含4B且平分四面體ABCD體積的平面方程式 《答》 2x-3y+5z=1 C+D 《解》CD的中點 M= =(0,3,2) 2 所求為通過A,B,M的平面方程式 E ① 點M(0,3,2) ② 法向量 N=ABxm =(2,3,1)x(3,2,0) =(-2,3,-5)=(2,-3,5) ...E:2x-3y+5z=1 D. B 已解決 回答數: 1
數學 高中 18天以前 求解挺急的 謝謝! 請問第二題第一小題為什麼是負的根號x²-4x+8? x+a Ex++ax +a - a=2 x+a 進階題:每題9分,共27分 a =-2# 其定義域 1.設f(x)=x²+6x+8,其定義域為{xER-4≤x≤1},且g(x)= 為{xER-6≤x≤6,x=0},試求(gf(x)的值域。 9 4 解 2 g (&(a)) gε & (7)) 已解決 回答數: 1