年級

科目

問題的種類

PromotionBanner
數學 高中

卡很久救救我😭 第九題的算法 算出每種球有幾顆後,為什麼最後算抽出相異球的機率時分母不能用10×9,而是C10取2

6. 某公司舉辦年終抽獎活動,每人從編號分別為1至6的大張牌中隨機抽取兩 張。假設每張牌抽到的機會均相等,且規則如下: 若這兩張牌的號碼之和 是奇數,則可得獎金100元,此時抽獎結束:口若號碼之和為偶數,就將迅 兩張牌丟掉,再從剩下的四張牌中隨機抽取兩張牌,且其號碼之和為奇數, 則可得獎金 50 元,其他情形則沒有獎金,此時抽獎結束。 依上述規則,試求每人參加此抽獎活動的獎金期望值為多少元? (A) 50 (B) 70 (C)72 (D) 80 (E) 100 - 答對率45% 110 多選題 元6 機車 7. 袋中有2顆紅球、3顆白球與1顆籃球,其大小皆相同,今將袋中的球 取出,每次隨機取出一顆,取後不放回,直到所有球被取出為止。試選 確的選項。 SPEE W「取出的第一顆為紅球」的機率等於「取出的第二顆為紅球」的機。 (B)「取出的第一顆為紅球」與「取出的第二顆為紅球」兩者為獨立事件 (C)「取出的第一顆為紅球」與「取出的第二顆為白球或籃球」兩者為互斥事件 360 (D)「取出的第一、二顆皆為紅球」的機率等於「取出的第一、二顆皆為白球」 的機率個「取出的前三顆皆為白球」的機率小於「取出的前三顆球顏色皆 相異」的機率。 答對率50%) 108 填充題 8. 根據某國對失蹤輕航機的調查得知;失蹤輕航機中有70% 後來會被找到。在被找到的輕 6 航機當中,有60% 裝設緊急定位傳送器;而沒被找到的失蹤輕航機當中,則有90% 未 裝設緊急定位傳送器,緊急定位傳送器會在飛機失事墜毀時發送訊號,讓搜救人員可以 定位。現有一架輕航機失蹤,若已知該機有裝設緊急定位傳送器,則它會被找到的機率 (化為最簡分數) 回家园 為 。(化為最簡分數) 31 甲投幣一枚後,按三次均出現同色的機率為 袋中有藍、綠、黃三種顏色的球共 10 顆 - 今從袋中隨機抽取兩顆球(每顆球被抽中的機 率相等),若抽出的兩顆球皆為藍色的機率為一, 皆為綠色的機率為二,則從袋中隨機 2) 15 97 ¹ 1 抽出兩球,此兩球為相異顏色的機率為 1017 在 回 1111 學測B) (11學測B 190 |10.有一按鈕遊戲機,每投幣一枚,可按遊戲機三次。第一次按下會出現黑色或白色的機率 各為;第二或第三次按下,出現與前一次同色的機率為一,不同色的機率為二。今某 (化為最簡分數)(黑白却等等) 2 3 3 答對率69% 109 學測 吉愛車

已解決 回答數: 1
數學 高中

請問第20題的紅框內算式是怎麼來的

18 至20 題為題組 甲城市有一名為「三角公園」的都市綠地,因其土地形狀特殊且緊鄰知名夜市而饒富 签名。三角公園入ABC 的地形如下圖(11),從市府提供的量測結果知其三邊長分別為 AB = 150 公尺, BC = 250公尺, AC = 300公尺,公園內部「點處設有涼亭一座,因設計之 初各方居民均極力爭取將涼亭設於較近自己居住的社區,後基於公平起見,市府決議「點 定位於到公園三邊等距離處。用平台实 公園啟用三個月後發覺內部植被因踐踏而嚴重損毀,所以市府擬增設一條通過涼亭 點的直線步道,該步道的一出入口是位於最短邊 AB上的D點且AD = 100 公尺。於步道完 工後,市府將以此步道及AI、BI、CT為分界線劃分公園腹地AABC 為五個區塊,如下圖(12)。 Boob 150 loo B B 80 14 95 (3) 1 7 7 100 Joan Exo 50*2 120 14 (5) 7 7 no 圖(11) 圖(12) 除入ADI將安置運動及遊戲設施以為遊樂區外,其他四個區塊均規劃為不同主題的園藝區。 試回答下列問題:求tp同半徑面積 - }$ (San (-)(-C) S = 150+300+250 18. 從涼亭「點到公園任一邊的距離為多少公尺?(單選題,3分) -35 r.350 350/350 1507 (350-308830-250) 10+ 0 (1) (2) √14 9、14 1.350 = 350 x 200x To Leto (4) 114. #r. x = d.2.14 ※ 19. 若將步道視為一線段,步道面積不計,則遊戲區 AMDI的面積占公園腹地AABC的面積 之百分比為何?試選出最接近的選項。(單選題,4分)联A45LP2hbc16hBIA (1) 10% ABI (4) 20% (5) 24% AB CABL 3 B + TEBE ABACHBL A A疲-Fi - F. B十三FAC十分AAB] - BE 同Sté-A :::CN-Z :14% 20. 若已知陳爺爺以固定速度自步道出入口 D點直線前行至學「點其費60 秒,蘇魯若 繼續以此速度前行,陳爺爺需再費時多少秒才能到達步道的另一出入口?(非選擇題(or 8分) r=100 To 12 (2) 14% - 03 (3) 18% 2

尚未解決 回答數: 1
1/2