數學 高中 15天以前 想問E選項第二次為什麼跟第一次抽中白球的機率一樣 答得0分,共20分 3. LABE 袋中有3個紅球,7個白球,假設每球被取到的機會均等,今自袋中隨機取球,則下 列哪些選項是正確的? 3 ④只取一球,取到紅球的機率為 3x7 10 = (B)一次取兩球,只取一次,恰為一紅球一白球的機率為 15 7 Co (C)一次取一球,取後放回,共取兩次,恰為一紅一白球的機率為 (D)一次取一球,取後不放回,共取兩次,恰為一紅球一白球的機率為 3)一次取一球,取後不放回,則第二次取到白球的機率為 26P(第二次)=P(第一次)=10 109 8-1 7 10 21 100 7 30 3 10 ㄨ 10 ㄨˇ 1.1. 10910 Go x2 10 30 已解決 回答數: 1
數學 高中 18天以前 想請教這題: 為什麼包含中點M的平面MAB就可平分四面體ABCD? 我的疑惑點是它並非正四面體, 因此平分的MC與MD不是高, 以MAB為共用底, 如何知道D,C對平面MAB的距離是等長? -例13:平分四面體 空間中四點 4(−3,1,2)、B(-1,4,3)、C(2,1,4)、D(-2,5,0), 求包含4B且平分四面體ABCD體積的平面方程式 《答》 2x-3y+5z=1 C+D 《解》CD的中點 M= =(0,3,2) 2 所求為通過A,B,M的平面方程式 E ① 點M(0,3,2) ② 法向量 N=ABxm =(2,3,1)x(3,2,0) =(-2,3,-5)=(2,-3,5) ...E:2x-3y+5z=1 D. B 已解決 回答數: 1
數學 高中 21天以前 請問為什麼第五個選項答案是32Q2(1)=247/2,可是我怎麼算都是509/16?(我想知道我哪裡算錯了,謝謝) I (23) 7 已知x*除以x ㄚˇ ·的商為Q(x),餘式為,9,(x)除以x. 2 2 的商為 01-12 Q:(x),餘式為,請選出正確的選項。 Q1.1843x+4年...赵+3 (1)=256或 7 255x-46 (x) = ** =32Q2(1) X32160 (3)Q 510 (4) 12= 1616 509 1 16 = 1 32 2* 1+0+0+0+0+0+0+0+01 1/2 t Q1=(x-Q2+2 (5)Q(5)=2=6 1(153) (5)32Q:(1)=123 163202(1) Q(1): 8項 Q₁ ( 5 ) = 8 × (517) = 12/18 = 16 510 255 = 256X2255 = 大 已解決 回答數: 1
數學 高中 23天以前 想問第三個選項,我是用三角不等式 但為什麼解出來是根號2啊 範例3 25=8-82+29-29- 29²+69 +11=0 36-4×2×17 設複數 z的實部與虛部相同,請選出正確的選項。(多選) (1)所有可能的:在複數平面上所形成的圖形為一直線 (2)|z1|=|zi| →並不是一條線而是點(20) 二 ^(8) 2+11+12+计的最小值為11 J8a7, (4) 滿足Iz(2=1的複數有兩個 (5)恰有一個複數z滿足lz+ 21-|z-√2|=2 一入 12 2x Topic 38 模 Tez. 1772 = atai 範3.複萎. Z + (3) 12+1/+12 -~ \ 6 7 min = 1 (4)滿足1-21=1的已有2個 (15) 恰一個滿足12+21-12-21=2. 3.原本的作法 詳解做法 | 2+1|+|2-~| 3 (-1,0) | z + 1 + z = ~ | =|zatzai+1-ì| = | (za+1) + (za -1) Ñ | = = 4a²+4a+1 +49²=-4a+l 2 √ 89² +2 (0,1) x = y (0, -1) + (-1, 0) / $x = y 10-12 作對稱 1.連接(0) (011). xx = y 3 1010) 故當士=0時有最小值2. In D 已解決 回答數: 1
數學 高中 23天以前 想問這題我右下角圈起的地方為什麼不能是12+根號的? 玩玩看 44656+12+2645 4+376 -4416623 5° 1)設cos+3sin=2,且0°<<90°,試求cos+sin日之值。 1OS00 354-2-105) 510-4-41050+1050² (cos = bissing) 1-1050 9-90050-4-4050 +20Se² 【88年日大自】 Ans: 4+√e 5 2 Cose =4-12sine +9506= 1-SinB (@SA = 4-12540 + 951hG 10 sing²-125n8+3=0 C 已解決 回答數: 1
數學 高中 25天以前 想請問機率強人,為什麼我這樣算不行呢? X=1 的時候,最小是1,其他兩顆骰子有6x6種可能,所以發生機率為36/216。 投擲一顆骰子3次, 今隨機變數X表示3次出現點數中的最小值,試求X的期望值 x 2 3 4 5 6 P 6x6 5x5 4x4 3x3 2X2 1x1 63 63 63 63 63 63 0 P(X=3)=P(三次裡無1.2點入至少一個3) x 2 3 4 5 P 36 25 16 9 4 216 216 216 216 216 216 已解決 回答數: 1
數學 高中 25天以前 請問第四與第五個選項我假設AD=h,BD=x,然後用角BAD的餘弦定理與ACD的畢氏定理解h與x,為什麼不對? 314、58. 如右圖,在等腰△ABC中,AB=AC=3V2,D點在BC 3 CQS/BAC = cos(+90) = -13333 PC² = 36-36/3) = 48, (2)BC=33 佢 上,AD LAC,sin ∠BAD=,請問下列哪些選項是正確 25的?(多選) 2/2 (1)cos∠BAC= 3 (5)BD=√3 2 目 = 652h 18+1=48+x²-853x (4)·(5) (4)AD=3 COSLBAD=312 18+h²=N² (3√2)+h=(45-7) 24=54+3=3x² x=853X-1==-30 ARCTURUST 352 x 457x 43 BY △ABC的面積為62 3x²-3h°=30 x²h² = 10 h = √12 = √5 10-853x=30553 X=2 C 已解決 回答數: 1
數學 高中 26天以前 請問這題要怎麼算?(排組) (2) 小花一家人隔天搭乘該國的高鐵,從第一站坐到最後一站,已知高鐵站有20站, 為提高行車效率,選擇其中8站不停,但第一站和最後一站一定要停,且相鄰兩站不 能同時不停,則共有165 種不同的停靠方式。 5 的 7 6 C² - 已解決 回答數: 1