年級

科目

問題的種類

物理 高中

馬上練習1 第二大題第二題那個週期是看圖嗎

SCHEL A 位置(cm) fx = 7 27 馬上練習1] the 某生觀測緊的水平細細上行進波的傳播,發現上 甲直位移 相距1.5 cm 的甲、乙兩點,直位移之和位图, 而甲贴鉛直位移陣時間的變化如圖所示。試問下列 0.2 1.0 0.4 O. 何者可能是此波的波动? (105 學測,答對率51%; (A) 12 cm/s (B) 7.5 cm/s (C) 5.0 cm/s (D) 4.5 cm/s (E) 3.0 cm/s. T=0.6-0.250.4 0.6 (S) 考,答對率81%) 上練習。 f 1 1 / 4 = o.2 Hz 4cm 段考基礎練習題 *為多選題 主題練習 概念週期波 t-s * ABC.投石於水,以形成連續的水波,相鄰波的距離,經5°後此波的最外終抵 達岸邊。若不落水處與岸相距10m,下列敘述哪些正確? (A) 相鄰兩波谷的距離為4cm (B) 水波的波長為4cm (C)水波的波速為2 mis V: 了:) At YBRZKIEW** 60 Hz v-fx 2= fx 4xod f = 1 of 回水波的週期為0.2s。 uniballigNO NEEDLE- ox ( 2 JoHz am sto -0.02 (m) A B →(m) m) C. D T = 5 Jo 2. 圖中的實線為某向左行進的橫波在t=0時的波形,而虛線則 為(=2s時的波形,且波前進的距離尚未超過一個波長,則: (1)振幅為1 m,波長為 8 波前進的位移量值為2 m。 2週期為十 s,頻率為 Hz。 (3)波速為 m/s。 。 0 -21 0 2 4 6 8 10 OKUS v=fx2 = 7/7 - 07 7 7 7 8 x 8 = 1000000 ton 3. 某向右行進的連續週期波的波形由圖(a)變成圖(b),歷時2s,則此波之最小波速為 6,05 m/s t-2 y(m) to A504 - 了kt Azzy V=fx1 = X sy pm) X=0 0.44 0.46 x zo. eye 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.10.2 0.3 0.4 0.5 0.6 0.7 0 - x(m) 0 x(m) -0.4 -0.4上 Ang 2 1 1 0 ol zoo5

待回答 回答數: 0
物理 高中

這些題目不太懂

第3題與非選A 為題組二: 小華在課堂中學習到虎克定律,想了解橡皮筋是否遵守虎克定律? 於是,設計以下實驗來驗證: 實驗步驟如下: 步驟一:將一條黃色橡皮筋(編號1)與紙杯架設於鐵架上, 如右圖所示。 步驟二:依次在紙杯中加入不同水量,分別為50.0g 100.0g、150.0g、200.0g、250.0 g、300.0 g。 步驟三:觀察並記錄橡皮筋之伸長量紀錄於表(一) 步驟四:接著將裝置改成串聯兩條黃色橡皮筋(編號2), 重複步驟一~三。數據紀錄於表(一) 步驟五:將裝置改成串聯三條黃色橡皮筋(編號3), 重複步驟一~三。數據紀錄於表(一) 表一 50.0 100.0 編號1. 150.0 3.35 200.0 250.0 300.0 1.12 2.23 4.48 7.22 8.82 外力(gv) 伸長量(cm) 弹力係數 (gw/cm) 44.6 44.8 44.8 44.6 34.6 34.0 編號 2. 50.0 150.0 200.0 外力(gw) 伸長量(cm) 弹力係数 100.0 4.43 250.0 14.45 300.0 17.65 2.24 6.68 8.84 22.3 22.6 22.5 22.6 17.3 17.0 (gw/cm) 50.0 100.0 編號 3. 150.0 11.14 200.0 250.0 300.0 3.73 7.39 14.70 24.08 29.42 外力(gw) 伸長量(cm) 彈力係数 (gw/cm) 13.4 13.5 13.5 13.6 10.4 10.2 非選A小華同學從表(一)中的數據想了解橡皮筋的伸長量與外力(水量)之間的關係,請協助 小華將編號1的關係圖描繪出,外力(水量)為X軸、伸長量為y軸作圖。(圖表) 此題為簡答固表題,請移至答案卷作答。 2 3. 小華將表(一)中的數據與同學們進行討論,並且提出自己的想法,哪位同學的推論不正 確? (A)小龍說橡皮筋於外力(水重量)200gw 以內有符合虎克定律 (B) 阿德認為外力(水重量)超過300gw,橡皮筋會斷裂 (C) 阿智認為有串聯的橡皮筋,整體彈力係數會較小 (D) 小美認為在彈性限度內,橡皮筋伸長量會與外力(水重量)成正相關

待回答 回答數: 0
物理 高中

21題 教教我QAQ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0
物理 高中

第21題 到底要怎麼寫ಥ_ಥ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0