數學 高中 3年以上以前 這積分在寫什麼⋯看不懂 ng IS, integrate -the y-con dx 140 +00 the E = E= - 二 kly dx (x2 + y2)3/2 + (x2 + y2) 3/2 - - La = kay List het wilyevin = kavb- ( ) - 2ka +00 em 1 = ] X kly (- y 2 nall el- . 2x² + y² -0 he limits 待回答 回答數: 0
數學 高中 3年以上以前 請問中位數最大值要怎麼算 a= Z 「格列佛再遊記》格列佛百人流落至小人國,這次他還著自己英挺的外貌受 小人國歡迎,成為小人國的國民,已知小人國原來有99人,每位國民的身 不超過5公分,而格列佛的身高是170 公分, 4 4de present 若原來99 人的平均值為3公分,則格列佛來到後,小人國平均數是多少? 若原來99 人身高的中位數為2.5 公分且四分位距為1公分,則格列佛來 到小人國後,中位數可能的最小值為多少?最大值為多少? 待回答 回答數: 0
數學 高中 3年以上以前 求解21,22,38🙇 section1.3不用理他 equation 2.1.5是微分的定義式 (d) Use the definition of derivative to prove that your guess in part (c) is correct. 14-21 Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative. 14. f(x) = 3x - 8 15) f(x) = mx + b 16. f(x) - 4 + 8x - 5x? (17) f(x) = x - 3x + 5 18. f(x) - x + V g(x) - 19- x? - 1 20. f(x) 21s(x) x2 2.x - 3 (hours) arger. The graph hat the battery purs). (r)? graph - a 22.) a) Sketch the graph of f(x) - V6 - x by starting with the graph of y # and using the transformations of Section 1.3. (b) Use the graph from part (a) to sketch the graph of f! (c) Use the definition of a derivative to find f'(x). What are the domains of f and f'? (d) Use a graphing device to graph f' and compare with your sketch in part (b). lo-TE 23. (a) If f(x) = x + 1/x, find f'(x). (b) Check to see that your answer to part (a) is reasonable by JE comparing the graphs of f and f'. 1 (hours) shows how 24. The table given tho hai 待回答 回答數: 0
數學 高中 3年以上以前 求詳解,拜託了🙏 > 3 2 E. 如右圖,D、E分別在入ABC的邊AB、AC 上,且AD: DB=2:1, AE:EC=3:4,又 BE 與 CD 相交於 P點,則若入BPD的面積為5,則 AABC的面積為7k E P 1 B (12180 CON MI 8 JAL CAMERA 尚未解決 回答數: 1
數學 高中 3年以上以前 求解🙏 14.右圖每一小方格皆是燈長為1的正方形 D 15. 如圖的兩個圓形魚場相切於E點,直徑分別為 60 公尺與80 公尺,今欲搭建兩便橋 且兩便橋均通過E點,且互相垂直,試求兩兩便橋長度和的最大值為0@@ @ (提示:設小圓圓心O.ZOEA=0) conto 尚未解決 回答數: 1
數學 高中 3年以上以前 求解第二題 (sino COSO DE sino - 2 sino coso tcos 單元3 三角的和差角公式 1-zuino cono 1 9. Ei sin 0 - cos e - 求下列各式的值: : 3 3 (1) sin 20 . 1-sin20 cos 40 解) (1) sin20 Cos 130 to sin 30 sino = 2 sino caso = cos 30 coso 1 9 = lsino-coso } . - (4 cos3 0 - 3 cos o I coso - 8 1 | - 9 7 9 尚未解決 回答數: 1
數學 高中 3年以上以前 求解第5題 PROPERTIES OF CURVES (Chapter 13) 340 ACTIVITY Click on the icon to run a card game on curve properties. REVIEW SET 13A b y = x - 5x + 2 at (2,0) 1 Find the equation of the tangent to: a y=-222 at the point where x = -1 1-2x at (1, - d f(x) = (3x-1 at the point where 1 = e f(x) = ln(x-2) at the point where x = e. 2 Find the equation of the normal to: a y = 13.1 +4 at (4,4) y = 3e2: a Find a. b at the point where I = 1. 3 At the point where x = 0, the tangent to f(x) = 4x + px + q has equation y = 50-1 Find p and q. 4 Find all points on the curve y = 22 + 3.22 - 10x +3 where the gradient of the tangent is 2 5 The line through A(2, 4) and B(0,8) is a tangent to y= (x + 2)2 6 Find where the tangent to y = 228 +4x – 1 at (1,5) meets the curve again. a Find the equation of the normal to y = e2c at the point where x = a. b Hence find the equation of the normal to y = e21 which passes through the origin. 8 Find the coordinates of P and Q if (PQ) 5 y = at (1,5). va 7 YA is the tangent to P (1,5) 5 y = Q The tangent to y = x+/T = c at * = -3 cuts the axes at points A and B. Determine the area of triangle OAB. Find intervals where f(x) = -23 - 6x2 + 36x - 17 is: a increasing Consider the function f(x) = 2x3 - 3x2 - 360 +7. a Find and classify all stationary points. b decreasing b Find intervals where the function is increasing and decreasing. Describe the behaviour of the function as 200 and as X-→ -0. d Sketch the graph of y=f(x) showing the 待回答 回答數: 0
數學 高中 3年以上以前 正弦、餘弦值不能通分嗎? 向鉛筆跡那樣先通分,提出sincos後,再跟分母約分的話沒有辦法得到答案嗎? sin3A cos30 cos A sino Ans ang sinh cong cone inng wang 4 wong. Boge hing one :13.4o.no%) 14 wy ug .3) = 6.4 DV sin? g boyf, vyng ng . 1 = binto woyrg 待回答 回答數: 0
數學 高中 3年以上以前 求解謝謝🙌 五、計算題(共15 分) Notre 15 (25-3) ( 13 h 3) = 53-2 - 大 +3.(x+一 計算下列各式的值: 15:13 試利用(x+ (x+4)=x+*+- (6+) sa ne contact (1) (2+v3 ) + 1 。(7分) 23 1 (8分) (2) (2+3 ) + (2+√3) 解: 尚未解決 回答數: 1
數學 高中 3年以上以前 求解 六,一個存款帳戶本金為P元,其年利率為(表示成小數),以每年1次複利計息。則此帳戶的餘額4 為 A= -14 ) 其中N為複利計息總次數。求此帳戶的餘額。 Ans: 1. P = $10,000, r = 6.5%,n=12, N = 120 2. . P = $5,000,r= 5.5%,n=4, N = 60 待回答 回答數: 0