数学
高校生
解決済み

(a+b)(b+c)(c+a)+abc
この式を因数分解するという問題なのですが、
途中式の意味がわからない部分(画像中の下線部)があるので、そこを踏まえて解き方を教えてください。

(2)与式 ={(a+b)(a+c)(b+c)+ abc ={a²+(b+c)a+bc)(b+c)+ abc =(b+c)a²+(b+c)2a+bc(b+c)+abc =(b+c)a²+(b+c)²+bca+bc(b+c) =(a+(b+c)(b+c)a+bc) +x)=360 =(a+b+c)(ab+bc+ca) 11 b+c → (b+c)2 b+c bc bc (b+c)²+bc

回答

✨ ベストアンサー ✨

以下、x^2はxの二乗ということです。

下線部は前の式を「降べきの順」にしています。つまり次数の高い順に並べるということです。写真では◯a^2+◯a+◯という形にしてますよね!

あとはたすき掛けで因数分解すればできます!たすき掛けがわからなければご自分の参考書かネットで確認してください!似たような問題があると思います!

ゆ い

ありがとうございます。
納得しました。
わたしはたすきがけ、今回のような複雑なものが特に苦手なのですが、コツはありますか?ひたすら練習あるのみですかね?

ゆ い

るのみですかね?

アル

わかります僕も苦手です。練習すれば少しはマシになります。練習で間違えた計算問題は時間空けて何回も解くといいと思います。

ゆ い

何回も解いて見ようと思います。ありがとうございました!

この回答にコメントする

回答

分かりにくかったらすみません😌

ゆ い

ありがとうございます!わかりやすいです🙇🏻‍♀️
先に回答してくださった方をベストアンサーにしました。すみません🙏🏻

この回答にコメントする
疑問は解決しましたか?