年級

科目

問題的種類

物理 高中

物理錯題求解

4 17.8 18.G 全班總人次 全班總時數 12.( 10.(- )俄烏衝突期間造成國際物價上漲,其中食用油的原料之一茶花籽正是烏克蘭最大宗出口的農作物,假設一般葵花籽 的體積大約為2107立方公尺,如果將一莫耳的茶花籽均勻灑在世界國土面積最大的國家俄羅斯上,像是疊積木般層 層往上堆疊,則約可發出多少公尺的高度?(俄羅斯國土總面積約1700 萬平方公里) 101. (A) 0.7 公尺 (B) 7 公尺 (C) 70 公尺 (D) 700 公尺 (E) 7000公尺 x102. 3000 1. 下列關於原子內部結構探究過程的敘述,依照時間由先到後做排序,何者正確?X,03. (甲)湯木生陰極射線實驗,發現陰極射出帶負電的粒子, (乙)利用 o粒子撞擊鈹原子,發現不帶電的中子 (丙)利用a粒子撞擊金箔,發現原子內有核 104. 1000万 105. -20007 106. (丁)蓋爾曼用高速電子撞擊質子,發現質子內部有更小的結構 (戊)拉塞福發現每個元素中皆有「氫原子核」,後來命名為質子 (C) 丁乙戊丙甲 (A)甲丙戊乙丁 (B)甲戊乙丙丁 在人類還無法直接看到原子的時代,物理學家就對原子模型與內部結構的探索作了許多努力,然而對科學現象下定論 之前,皆需要充分的科學證據或實驗作支持,下列關於物理學家對原子模型敘述與相關實驗何者正確? (A)湯木生的陰極射線實驗結果可以測量出電子的電量大小 (B)根據湯木生提出的布丁葡萄乾模型(亦稱為西瓜模型),可推斷u粒子撞擊金箔後會產生很大角度的散射角 (C)由拉塞福的散射實驗結果顯示 u粒子撞後產生大角度偏折的機率極小,因此推算出原子內部的原子核體積極小 (D)卡文迪西扭秤實驗結果顯示電子繞著原子核轉,可從反射光的角度推算出來 (E)密立根油滴實驗驗證出電子電性為負電 107.. (D) 甲乙丙戊丁(E)甲丙乙戊丁 )已知鋰原子的密度約為0.53 公克/立方公分,其原子半徑約為152 皮米。若鋰原子核的半徑為原子半徑的十萬分之一, 則鋰原子核的密度大約為多少公克/立方公分?(視為球體計算,球體體積公式: TR,R為半徑) (A) 1010 (C)1013 (B) 1012 (E)1016 (D) 1015 )拉塞福為了探測原子內部結構,以u粒子向右方撞擊金箔,實驗裝置如右圖所示, 金箔位於裝置的圓心處,探測器可以沿著圓周移動,偵測散射到某個角度的u粒子數量 若將散射後 u 粒子的運動方向與入射方向的夾角定為0,取原入射方向為0度, 往兩側角度漸增,原入射方向的反向為 180 度,則散射 u粒子的數量n與0的關係圖 180° 90° 探測器 粒子源 金泊 0°

尚未解決 回答數: 1
物理 高中

21題 教教我QAQ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0
物理 高中

第21題 到底要怎麼寫ಥ_ಥ

Section 11.3 Angular Momentum J-s behind rmv a he ur 265 = ? a ter 30. Example 11.1: A 58.1 Iw COMP string and whirled at 18. Express the units of angular momentum (a) using only the funda- momentum of magr mental units kilogram, meter, and second; (b) in a form involving the circular path. Fir newtons; (c) in a form involving joules. marw horizontal and (b) the 19. Use data from Appendix E to make an order-of-magnitude esti- 31. Example 11.2. A stai mate for the angular momentum of our Solar System about the Max 27 the end of its lifetime galactic center. mu = 17.293 of radius 4.96 X 10' 20. A gymnast of rotational inertia 63 kg•m? is tumbling head over heels dwarf of radius 4.21 with angular momentum 460 kg•m?/s. What's her angular speed? 17.99 acted on the core, fine A 660-g hoop 95 cm in diameter is rotating at 170 rpm about its 32. Example 11.2: Astro 22. A 1.3-th-diameter golf ball has mass 45 g and is spinning at central axis. What's its angular momentum? L: 1W=0-66*(0-95) x 140x277.10 km and determin core that collapsed to 3000 rpm. Treating the golf ball as a uniform solid sphere, what's ing with a period of 4 its angular momentum? 18-3 33. Example 11.2. The s 10-598 rpm With her arms outstre Section 11.4 Conservation of Angular Momentum tational inertia is 3.5 23. A potter's wheel with rotational inertia 6.20 kg•m? is spinning (Fig. 11.6b), her rot freely at 20.0 rpm. The potter drops a 2.50-kg lump of clay onto her final spin rate? L = 6 2 x 2-1 = 12-99~13 - 2x2 22 13= 60.48)" x 2.5 W W = 2 . X z W = 20x2T 60 ²2.1 ~ 1 12.574

待回答 回答數: 0
物理 高中

18題,感謝

10. [2D and 3D motion] Show that the potential energy U(r) ofFa particle of nass jat aa distance r(> 員 from a planet of Inass 4 and radins 戶話 11. [The cross product] Caleulate the cross product A x B, assuming that A and B both lie in the x-y plane and have the respective nonzero components 4,, 4, and 妖,, 且, 12. [Angular momentum] Show that 主r, the instantaneous position ofa particle of mass mu with respect to a certain origin O, is parallel to its acceleration dv/吧, then the time Tate of change of the angular Inoimentum L with respect to the given origin vanishes 13. [Theorem 了 Show that the torque-angular momentum formnla _箇 7二 is also valid for a two-particle system 放 the origin lies at the center of mass 14. [Theorem IIH] Two particles of respective Inass ml and 2 are connected to the ends of amassless rod and Inove in the uniform gravitational field g ofthe earth. (a) What is the acceleration of their center of nass Telative to a Newtonian origin O? (b) Show that the angular Inomentum of the two particles about their center of nass 生 aconstant of the motion. 15. [Moments of inertia] Calculate the moment of inertia ofathin, uniform rod of mass m and length / about an axis perpendicular to the rod and at a distance q from one end. 16. [Rotation about a fixed axis] Consider the rotating cylinder in Figure, and suppose that A7 sg, Fo 三 0.6 Nt, and @ 二 0.2m, Calculate (a) The torque 7 acting on the cylinder (b) Ti ngular aceeleration q of the cylinder 17. [Work and kinet: instant Totat eenergy] A 40-kg homogeneous sphere of radius 10 cm is at acertain about ashaft through its center at 600 rpm. Assuining that a constant fric itude ets so that the sphere comes to rest in 10 seconds, Calculate th tional torque ofthis torque. 18. [The physical pendl end and allowed to oscillate freely in a horizontal plane (see Figure) m] A uniform Tod of Inass ru and length / is suspended at one (a) What is the period of this physic lpendulum for small amplitudes? (b) Ithe velocity u0 of the mass ce Hulum is initially released at rest in a horizontal position。what is the er at a subsequent instant when the Tod is vertical? (ec) Calculate the vertical and the horizontal components of the force on the rod at the point of suspensic 19 and rotations] Analyze the motion of a homogeneous sphere of mass 和7 and Tadius dq, which rolls without slipping down a fixed inclined plane of angle # 20. of angular momentum] A Inan has ainoment of inertia 五 about the = axis. He is originally at Test and standing on asinall platform which can turn freely. Ifhe is handed a wheel which is rotating at and has anoinent of inertia 了about its spinning axis, determine his angular velocity 放 (a) he holds the wheel upright, (b) turns the wheel out 9 二 90?, and (c) turns the wheel downward, 9 二 180?. Neglect the effect of holding the wheel a distance d away from the z axis

待回答 回答數: 0