数学
高校生
解決済み

赤い矢印のところです。どうしてこの様な変形になるのでしょうか?

0000 ズ 重要 例題 133 確率と漸化式 (2)・・・隣接3項間 座標平面上で,点Pを次の規則に従って移動させる。 1個のさいころを投げ, 出た目をaとするとき, a≦2 ならばx軸の正の方向へ αだけ移動させ, a≧3ならばy軸の正の方向へ1だけ移動させる。 SETY 原点を出発点としてさいころを繰り返し投げ, 点Pを順次移動させるとき, 自然 数nに対し, 点Pが点(n, 0) に至る確率をpm で表し, p=1 とする (1) +1 を Pn, pn-1 で表せ。 (2) n を求めよ。 [類 福井医大 ] 基本 123,132 指針 (1) P+D: 点Pが点(n+1,0)に至る確率。 点Pが点(n+1, 0) に到達する直前の状態 を次の排反事象 [1], [2] に分けて考える。 [1] (n, 0) にいて1の目が出る。大軸の正へ [2] 解答 (1) 点P (1) (10) にいて2の目が出る人物の正へ」P-1 +2 (2) (1) で導いた漸化式からpm を求める。 に到達するには (n+10) よって bn+1= == // P₂ + + / - P₁-1 6 6 1 (2) ³5 Pn+1 + = P₁ = 1/2 ( Pn+ / -Pn-1), 3 Pn+1 = 1/2 P₁= = = = = (P₁ = = = = P₁- Pn=-- -Pn-1 2 Pn+₁ + / - Pn= (P₁ + ²/3 Þo) • ( 12 ) ², mi/1/2=(a-1/21m)(-1) Po=1₁ P₁ = = = = 4²5 Pari+ = 13 Pn= ( 1 ) ² n+1 から 6 Pn+1+1pn=1 STOR + 1 - - Pn+17 (15²/(1++)) n [1] 点 (n, 0) にいて1の目が出る。 [2] (n-1, 0) にいて2の目が出る。 1/ の2通りの場合があり, [1], [2] の事象は互いに排反である。 1点 (n,0), (n-1,0)にい る確率はそれぞれ よって ②. 2. [2] 3 pm 3 n O 6 6 n+1 x² = ²/1² x + 1/² x ²5 から 6 6 Era Es y軸方向には移動しない。 この3,4,5,6は出ない。 回よってx=- Pn+1 pa+1 n+1 -P. =(-²)) STNORD. ** 2 6x²-x-1=0 よってx=-1/11/12/ 3' 5 (2③) から 1/{(1)-(-1) ÷ - ) [1] = 6 \n+1 (α, B)=(-1/3₁ 1/2). 3'2 x P².372 (1/2-1/23)とする。 P.577.
数列 漸化式

回答

✨ ベストアンサー ✨

等比数列の一般項を求めているだけです。
p(n+1)+(1/3)p(n)=q(n)とでも置くとわかりやすいかと思います。

すみません。まだよく分からないので、もう少し詳しく教えて頂いてもいいですか?

poppo

例えば、a(n+1)=2a(n)という漸化式が与えられた場合、これは公比2の等比数列になりますよね。
そのためこの漸化式の一般項は
a(n)=a(1)・2^(n-1)
となりますよね。

例えばp(n)+(1/3)p(n-1)=q(n)とおくと、一つ目の式は、
q(n+1)=(1/2)q(n)となり、等比数列であることがわかります。

なるほど。理解出来ました!詳しい解説助かりました!ありがとうございます。

この回答にコメントする
疑問は解決しましたか?