数学
高校生
解決済み

(2)ってどうしてx→1なんですか?
定義域がx≠1だからですか?
この場合はx→1−0とx→1+0の両方を調べなくていいんですか?

連続。 Wia b 基本例題138 関数の連続・不連続について調べる -1≦x≦2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2) g(x)= 1 (x-1)2 (3) h(x)=[x] ただし, []はガウス記号。 指針▷関数f(x) が 図 また また、f(x)がx=αで不連続とは [1] 極限値 lim f(x) が存在しない x→a f(0)=0 x→1 x=αで連続limf(x)=f(a) が成り立つ。 x-a 解答 (1) x>0 のとき f(x)=x2 x<0のとき f(x)=-x2 よって lim f(x)=limx2=0, x→+0 x→+0 1 (2) limg(x)=lim [2] 極限値 lim f(x) が存在するが limf(x)=f(a) x→a 関数のグラフをかくと考えやすい。 よって, x=0で連続であり 1₁.12-1 ゆえに =8 x→a x-0 (x+1), g(1)=0 p.233 基本事項 x→1 (x-1)2 DE 極限値 lim.g(x) は存在しないから x→1 lim f(x)=f(0) x-0 -1≦x≦2で連続。 limf(x)=lim(-x2)=0 x-0 水 00000 -1≦x<1, 1<x≦2で連続;x=1で不連続。 のとき Jalse) 6 |重要 139,140 のいずれかが成り立つこと。 3 Ant TERCEOLS 235 (1)(2) 整式で表された関数 は連続関数であることと p.233 基本事項 1 ③ に注 意。 関数の式が変わる点 [(1) ではx=0, (2) では x=1] における連続性を調 べる。なお, (3) では区間の 端点での連続性も調べる。 [x]はxを超えない最大の 4章 17 関数の連続性
関数の連続性 極限値

回答

まだ回答がありません。

疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉