数学
高校生
解決済み

以下のように考えたのですが,それがダメな理由を教えてください。

323 を求めよ。 とき、定数 α. 198 203、 e=a を代入す 。 の求め方 重要 例 例題 201(x-α) で割ったときの余り(微分利用) xについての多項式f(x) を (x-α)2で割ったときの余りを, a, f(a), f' (a) を 用いて表せ。 指針 多項式の割り算の問題では,次の等式を利用する。 A = B × Q+ R 割られる式割式余り [早稲田大 ] /p.321 参考事項, 重要 57 2次式(x-α)で割ったときの余りは1次式または定数であるから f(x)=(x-a)2Q(x)+px+g [Q(x)は商,pg は定数] が成り立つ。この両辺をxで微分して,商Q(x) が関係する部分の式が0となるよ うな値を代入すると,余りが求められる。 f(x) を (x-α)2で割ったときの商をQ(x) とし, 余りを f(x)=(x-a)(x)+px+q ① 両辺を xで微分すると 解答 x+g とすると,次の等式が成り立つ。 f(x)={(x-a)2Q(x)+(xa)2Q(x)+p =2(x-a)Q(x)+(x-a)'Q'(x)+p ①②の両辺にx=a を代入すると,それぞれ f(a)=pa+g ③, f'(a)=p... p=f'(a) 1)に従って求 を求めて る。 例題 200 ( 1 ) ■方が早い。 ④から ならS よって,③ から ■+h)-f(-2) したがって, 求める余りは -f(-2) -(-2) h ...... ②② ④ q=f(a)-pa=f(a)-af'(a) xf' (a)+f(a)-af' (a) (1+01) 余りの次数は,割る式 の次数より低い。 {f(x)g(x)}' =f'(x)g(x)+f(x)g'(x) { (ax+b)"} =n(ax+b)"' (ax+b)' (p.321 参照。) (x)の定 $1 (x-α) で割り切れるための条件 f(x)が (x-α) で割り切れることは,上で求めた余り xf (a)+f(a)-af' (a) が恒等的に 0 になる、ということである。 (am) 1000= (a+01) xf (a)+f(a)-af' (a) =0がxについての恒等式となるための条件は f'(a) = 0 かつ f(a f(a)=f'(a)=0 これより,f(a)=f(a) = 0 が得られる。 よって、 次のことが成り立つ。 多項式f(x) (x-α)' で割り切れるための必要十分条件は 9355 大阪工大) 6 章 34 3 微分係数と導関数 このとき, 方程式f(x)=0は(x-a)2Q(x)=0の形になる。 したがって、この条件は、方程式(x) = 0 がx=αを重解にもつ条件であるともいえる。 xについての多項式f(x)について,f(3) =2, f'(3) =1であるとき,f(x) を SOS 201 (x-3)で割ったときの余りを求めよ。((財) p.326 EX128(2)、 す。 -1)=0で 神奈川大] EX128 (1)
R(余 f(x) = ((-a)` Q(x) + pxt q fl(a) = (-a)²=@cal-pata R = fra) ++8 778

回答

✨ ベストアンサー ✨

求める余りはpx+qですよね
2行目はpa+qがf(a)だ、ということですよね
f(a)なのはpa+qであってpx+qではありません

s

なるほど,x=aということではないという解釈で大丈夫でしょうか?
回答ありがとうございます!

まあ、そうですね
つねにx=aではないですね

s

ありがとうございます😊

この回答にコメントする
疑問は解決しましたか?