数学
高校生
解決済み

xやyの変域の条件を式から見つけて、作るのが苦手です。何が良い方法はないでしょうか??

この問題で言うと、y^2≧0 からxの範囲を定めるところ等です。

重要 例題 104 条件つきの最大・最小 (2) 文 00000 xyがx+2y=1 を満たすとき,2x+3yPの最大値と最小値を求めよ。 CHART & THINKING 条件の式 文字を減らす方針でいく 変域にも注意 p.124 重要例題 72 は条件式が1次式であったが, 2次式の場合も方針は同じ。 条件式を利用して,文字を減らす方針でいく。 このとき,次の2点に注意しよう。 [1] x, yのどちらを消去したらよいか? 重要 72 →2x+3y2のxは1次,yは2次である。x+2y=1から2=(xの式)としてyを消 L2次 去する。 [2] 残った文字の変域はどうなるか? 2次↑ 問題文にはx,yの変域が与えられていないが, (実数) 2≧0 を利用すると,消去する yの変域 (y'≧0) からxの変域がわかる。 解答 x+2y=1からy=1/2(1-x)・・・① 41 ←を消去する。 y2≧0 であるから 1x20 すなわち x²-1≤0 (x+1)(x-1)≦0 から -1≤x≤1 ...... 2 よって 2x+3y2=2x+2/22 (1-x2)=1/2x2+2x+ 3 ◆消去する文字の条件 (2≧0) を,残る文字 の条件(-1≦x≦1) にお き換える。 [s] 0 2 13 x- + 2 3 6 13f(x) 基本形に変形。 6 この式を f(x) とすると, ② の範囲で 20 -3x²+2x+3/23 21 f(x)はx=/2/23 で最大値 13 6 11 1 0 3 3 x=-1 で最小値 -2 12-3 X 1 == をとる。 また, ①から -2 5 x=1/3のとき y=1/2(1-1) - 18 +9 √10 -- 3 √(x-2)² + 13 よって y=± 6 x=-1 のとき y2=0 よって y=0 したがって (x, y) = (1/3, √10 13 土 で最大値 6 6 (x, y)=(-1, 0) で最小値 -2 ink 設問で要求されてい なくても,最大値・最小値 を与えるxyの値は示し ておくようにしよう。

回答

✨ ベストアンサー ✨

各問題で、xやyの範囲を求める方法が理解できるなら、
それらの方法がそんなに多種多様というわけではないので、
・どんな方法があるかを自分の中で整理すること
・演習を積むこと
で対応できるかと思います
いくつかのパターンしかないということが
実感できるかと思います

この問題も、○x²+○y²=○を満たすとき〜の形でよく見ます
y²=……として、左辺y²≧0だから右辺も≧0、
というワンパターンで、
慣れればなんていうことのない問題
と思えるのではないでしょうか

よふ

この後に数十問解いてみたら、なんとなく掴めてきました。
ありがとうございます!

この回答にコメントする
疑問は解決しましたか?