数学
高校生
解決済み

(1)のなみ線引いたところが分かりません!
1+9をどうやって出すのでしょうか?誰か教えてくださると嬉しいです、宜しくお願い致します🙇

と (1) 103 | 次の1次不定方程式の解を1つ見つけよ。 143x+43y=1 るようにぃの値を定めよ。 (2) nを20以下の自然数とする。 5n+29とn+3の最大公約数が7とな ポイント (1) 特殊解を見つけよという問題です。 143と43は最大公約数が1 (互いに素) なので、割り算を次々と実行していくと、 必ず1が出てきます。 これから式 す。 変形すると,特殊解が見つかります。 (2)a=bg+rのr の部分が定数になるように式変形して, 互除法の原理を使いま 解答 (1)割り算を実行すると 143 = 43.3 + 14 ・・・ ← 143÷43 商3. 余り14 43 = 14.3 + 1) ←43÷14商3,余り1 これより, 1=43-14・3②を1について解いた =43-3 (143-433) ①を14=143-43・3と変形し代入 = (-3)・143 +(1 + 9) 43143と43注目し整理 = (-3)143 + 10・43 よって, 143x + 43y=1の解のひとつは (x,y) = (-3, 10) (2)5 + 29 = (n + 3)5 + 14 ← a=bg+rのrが定数となるように変形 +3と14の大小は気にしなくてよい) g(5n + 29, n + 3) = g (n + 3,14) よって, g(5n + 29, n+3)=7であるためには,n+3 が7の倍数か つ奇数であればよい。よって, 1≦x≦20より n+3=7,21 .. n=4, 18 n+3が7の倍数かつ偶数 のときは,g (n+3,14)=14 で不適となることに注意!! パターン103 ユークリッドの互除法 21

回答

疑問は解決しましたか?